Source code for banffprocessor.procedures.banff_procedures.estimator

"""Wrap Banff Estimator Procedure in Banff Processor Procedure."""

import banff.exceptions
import pyarrow as pa
from banff import estimato
from banff._log import log_levels

# Import must be absolute in order to ensure all modules reference the same global _c_handlers
import banffprocessor.processor_logger as plg
from banffprocessor.exceptions import EmptyMetadataFileError
from banffprocessor.metadata.models import estimators
from banffprocessor.metadata.models.estimatorspecs import Estimatorspecs
from banffprocessor.nls import _
from banffprocessor.procedures import factory
from banffprocessor.processor_data import ProcessorData
from banffprocessor.util.dataset import table_empty

# Setup local log for processor module specifically
log_lcl = plg.get_processor_child_logger("estimator")

# Required Metadata Files: "estimators", "estimatorspecs"
# Optional Metadata Files: "algorithms", "expressions", "varlists"

[docs] class Estimator: """Implements the Estimator Banff procedure as a `:class:banffprocessor.procedures.procedure_interface`.""" output_tables: tuple[str] = ("outacceptable", "outest_ef", "outest_lr", "outest_parm", "outrand_err")
[docs] @classmethod def execute(cls, processor_data: ProcessorData) -> int: """Execute the banff.outlier call, and returns the results.""" # alias the param name to shorten references bp = processor_data job_step = bp.current_job_step estimator_spec = bp.metaobjects.get_specs_obj(Estimatorspecs, job_step.specid) # Get the estimators to use proc_estimators = bp.metaobjects.get_estimators(estimator_spec.estimatorid) # Check that the list is not empty if(not proc_estimators): msg = _("No Estimators were found under EstimatorID: {} for jobID: {} " "and seqno: {}").format(estimator_spec.estimatorid, job_step.jobid, job_step.seqno) log_lcl.exception(msg) raise EmptyMetadataFileError(msg) fl_ac = True # flag to control if outacceptable is requested fl_ef = False # flag to control if outestef is requested fl_lr = False # flag to control if outestlr is requested fl_re = False # flag to control if outrand_err is requested # list of custom algorithms provided in the Algorithms.xml metadata file # We are fetching the Algorithms objects that apply to the current job step # below anyways, so add them to a list to convert to a dataset after, rather # than converting the entire list of Algorithms objects, even the ones we don't need proc_algorithms = [] for est in proc_estimators: if(est.randomerror): fl_re = True est_algo_name = est.algorithmname.upper() estimator_type = estimators.builtin_estimators().get(est_algo_name) if estimator_type is None: est_algo = bp.metaobjects.get_algorithm(est_algo_name) if(est_algo): proc_algorithms.append(est_algo) estimator_type = est_algo.type # Determine whether to request the data set containing the report on the calculation of « beta » coefficients (LR=Linear Regression). if(estimator_type == "LR"): fl_lr = True # Determine whether to request the data set containing the report on the calculation of averages (EF=Estimator Function). elif (estimator_type == "EF"): fl_ef = True # proc_estimators must now be converted to a pyarrow table. # As the list is already sorted on seqno by the metaobjects method # used to retrieve it, we don't need to sort the resulting dataset estimators_ds = pa.Table.from_pylist([e.to_dict() for e in proc_estimators]) estimators_ds = estimators_ds.drop_columns(["seqno", "estimatorid"]) # Algorithms list convert to pyarrow table algorithms_ds = None if(proc_algorithms): algorithms_ds = pa.Table.from_pylist([e.to_dict() for e in proc_algorithms]) # Imputed_File should always have data by this point, but we'll make sure to pass None # instead of an empty table to the banff call just to make sure we don't pass an empty table imputed_file = bp.get_dataset("imputed_file") status_file = bp.get_dataset("status_file") indata_hist = bp.get_dataset("indata_hist") instatus_hist = bp.get_dataset("instatus_hist") # Form our Banff call try: banff_call = estimato( unit_id=bp.input_params.unit_id, by=" ".join(bp.by_varlist) if bp.by_varlist else None, seed=bp.input_params.seed, verify_specs=None, # Not supposed to provide these as False, only True or None accept_negative=job_step.acceptnegative, no_by_stats=bp.input_params.no_by_stats, prefill_by_vars=True, presort=True, indata=imputed_file if imputed_file is not None and not table_empty(imputed_file) else None, instatus=status_file if status_file is not None and not table_empty(status_file) else None, indata_hist=indata_hist, inalgorithm=algorithms_ds, inestimator=estimators_ds, instatus_hist=instatus_hist, exclude_where_indata=bp.metaobjects.get_expression(estimator_spec.dataexclvar), exclude_where_indata_hist=bp.metaobjects.get_expression(estimator_spec.histexclvar), outstatus="pyarrow", outdata="pyarrow", # Make sure we default to False otherwise the file might still be created outacceptable="pyarrow" if bp.output_required("outacceptable") and fl_ac else False, outest_ef="pyarrow" if bp.output_required("outest_ef") and fl_ef else False, outest_lr="pyarrow" if bp.output_required("outest_lr") and fl_lr else False, outest_parm="pyarrow" if bp.output_required("outest_parm") else False, outrand_err="pyarrow" if bp.output_required("outrand_err") and fl_re else False, # We want everything captured while an input param configures the handlers # which indirectly filter. trace=log_levels.NOTSET, # Note that capture=None will supress console output in new version so use False or omit logger=log_lcl, _BP_c_log_handlers=plg.get_c_handlers(), ) except banff.exceptions.ProcedureCError as e: msg = _("An error occured during execution of this procedure.") log_lcl.exception(msg) return e.return_code # Get the return code from the exception # Set outstatus and outdata on processor_data so that our flags # will make the update to the originals bp.outstatus = banff_call.outstatus bp.outdata = banff_call.outdata bp.save_proc_output(banff_call, cls.output_tables) return banff_call.rc
[docs] def register(factory: factory) -> None: """Register this procedure class in the Banff processor procedure factory.""" factory.register("estimator", Estimator)