

FUNCTIONAL DESCRIPTION OF THE

BANFF SYSTEM FOR EDIT AND

IMPUTATION

Banff

Banff Support Team

March 2017

Version 2.07

In order to familiarize the users of Banff with its many uses, a number of documents, including

this one, have been prepared by Statistics Canada. For a list of these documents, the reader is

invited to consult the reference section.

This document describes the methodology used in the Banff procedures. It should be useful to

those who want to understand the mathematical methods underlying each of the Banff functions,

in order to evaluate the various options offered.

Copies of this document can be obtained from:

 Statistics Canada

 Business Survey Methods Division

 Generalized System Methods Section

 17th floor, R.H. Coats Building

 Ottawa, Ontario

 K1A 0T6

La version française de cette publication est disponible sur demande.

TABLE OF CONTENTS

1. INTRODUCTION ... 1 - 1

Background .. 1 - 1

Independence of SAS Procedures .. 1 - 1

BY Variables in Banff ... 1 - 1

Purpose of this Document .. 1 - 2

Other Available Documents... 1 - 2

Structure of this Document .. 1 - 3

Proc Verifyedits - Edit Specification and Analysis ... 1 - 4

Proc Editstats - Edit Summary Statistics Tables .. 1 - 4

Proc Outlier - Outlier Detection... 1 - 4

Proc Errorloc - Error Localization ... 1 - 4

Proc Deterministic - Deterministic Imputation .. 1 - 4

Proc Donorimputation - Donor Imputation ... 1 - 5

Proc Estimator - Imputation Estimators... 1 - 5

Proc Prorate - Prorating ... 1 - 5

Proc Massimputation - Mass Imputation ... 1 - 5

Updates to this Document .. 1 - 5

2. PROC VERIFYEDITS - EDIT SPECIFICATION AND ANALYSIS 2 - 1

2.1 EDIT SPECIFICATION .. 2 - 1

Purpose... 2 - 1

Edits in Banff ... 2 - 1

Canonical Form.. 2 - 1

Non-linear Edits ... 2 - 2

Edits for processing negative values .. 2 - 2

Edit Groups and Data Groups .. 2 - 3

2.2 CHECK EDITS.. 2 - 5

Purpose... 2 - 5

Definitions ... 2 - 5

Consistent and Inconsistent Groups of Edits ... 2 - 6

Redundant Edits; Tight but Non-restrictive Edits.. 2 - 7

Hidden Equalities ... 2 - 8

Upper and Lower Bounds; Determinacy ... 2 - 9

2.3 GENERATE EXTREMAL POINTS... 2 - 10

Purpose... 2 - 10

Description of the Method ... 2 - 10

Example of Extremal Points .. 2 - 11

2.4 GENERATE IMPLIED EDITS ... 2 - 12

Purpose... 2 - 12

Description of the Method ... 2 - 12

Example of Implied Edits .. 2 - 12

3. PROC EDITSTATS - EDIT SUMMARY STATISTICS TABLES 3 - 1

Purpose... 3 - 1

Description of the Method ... 3 - 1

Example of Creation of Edit Status Codes .. 3 - 1

Examples of the Tables .. 3 - 2

TABLE 1-1 .. 3 - 2

TABLE 1-2 .. 3 - 3

TABLE 1-3 .. 3 - 4

TABLE 2-1 .. 3 - 4

TABLE 2-2 .. 3 - 5

Uses of the Edit Summary Statistics Tables .. 3 - 6

Edits for Processing Negative Values .. 3 - 6

4. PROC OUTLIER - OUTLIER DETECTION ... 4 - 1

Purpose... 4 - 1

Options in Outlier Detection .. 4 - 1

Description of the Hidiroglou-Berthelot Method Using Current Data 4 - 2

Example of the Hidiroglou-Berthelot Method Using Current Data 4 - 3

Description of the Hidiroglou-Berthelot Method Using Ratios..................................... 4 - 4

Description of the Hidiroglou-Berthelot Method Using Historical Trends 4 - 5

Example of the Hidiroglou-Berthelot Method Using Historical Trends 4 - 5

Comparison of Hidiroglou-Berthelot Using Current Data and Historical Trends 4 - 9

Description of the Sigma-Gap Method Using Current Data.. 4 - 10

First Example of the Sigma-Gap Method Using Current Data 4 - 13

Second Example of the Sigma-Gap Method Using Current Data 4 - 14

Description of the Sigma-Gap Method Using Ratios .. 4 - 14

Description of the Sigma-Gap Method Using Historical Trends 4 - 16

Example of the Sigma-Gap Method Using Historical Trends 4 - 16

5. PROC ERRORLOC - ERROR LOCALIZATION ... 5 - 1

Purpose... 5 - 1

Description of the Method ... 5 - 1

Multiple Solutions.. 5 - 2

Example of Error Localization .. 5 - 3

Chernikova's Algorithm ... 5 - 4

Negative Values in Error Localization .. 5 - 5

Weights in Error Localization.. 5 - 5

Limit on Number of Fields in the Solution .. 5 - 6

No Solution Found - Manual Imputation Required ... 5 - 7

No Solution Found - Time Limit Exceeded... 5 - 7

Other Sources of Fields to Impute ... 5 - 7

6. PROC DETERMINISTIC - DETERMINISTIC IMPUTATION ... 6 - 1

Purpose... 6 - 1

Description of the Method ... 6 - 1

Example of Deterministic Imputation.. 6 - 1

Negative Values in Deterministic Imputation ... 6 - 3

7. PROC DONORIMPUTATION - DONOR IMPUTATION .. 7 - 1

Purpose... 7 - 1

Definitions ... 7 - 1

Example of Classification of Records ... 7 - 2

Negative Values in Donor Imputation ... 7 - 3

Mass Imputation .. 7 - 3

7.1 PREPARE FOR DONOR IMPUTATION ... 7 - 4

Purpose... 7 - 4

Previously-Imputed Data in Donor Records .. 7 - 4

Other Exclusions from the Donor Population.. 7 - 4

Criteria for Donor Imputation .. 7 - 4

7.2 FIND MATCHING FIELDS .. 7 - 5

Purpose... 7 - 5

User-specified Matching Fields or Must Match Fields ... 7 - 5

Description of the Method ... 7 - 6

Example of the Determination of Matching Fields ... 7 - 6

Example of No Matching Fields .. 7 - 7

7.3 TRANSFORM MATCHING FIELDS ... 7 - 9

Purpose... 7 - 9

Description of the Method ... 7 - 9

Example of Transformed Values ... 7 - 9

Distance Calculation .. 7 - 10

Example of Distance Calculation .. 7 - 10

7.4 PERFORM DONOR IMPUTATION ... 7 - 11

Purpose... 7 - 11

Description of the Method ... 7 - 11

Construction of the k-d Tree .. 7 - 11

Example of Construction of a Tree .. 7 - 12

Recipients with Matching Fields - Traversing the Tree .. 7 - 14

Recipients With No Matching Fields... 7 - 16

Post Imputation Edits ... 7 - 16

8. PROC ESTIMATOR - IMPUTATION ESTIMATORS ... 8 - 1

Purpose... 8 - 1

Types of Algorithms .. 8 - 1

Description of the Method ... 8 - 1

Specification of the Estimator.. 8 - 2

Description of the Banff Pre-Defined Algorithms ... 8 - 3

User-Defined Algorithms .. 8 - 6

Weighted and Unweighted Parameter Calculations .. 8 - 7

Model Variance Variable in Linear Regressions ... 8 - 7

Random Error Term ... 8 - 7

 Parameter Calculation in Linear Regression ... 8 - 8

Exclusion from the Calculation of Parameters .. 8 - 10

Criteria for Calculation of Parameters ... 8 - 11

Calculation of Imputation Estimators - First Execution of Proc Estimator 8 - 11

Calculation of Imputation Estimators - Second Execution of Proc Estimator,

 First Estimator.. 8 - 13

Calculation of Imputation Estimators - Second Execution of Proc Estimator,

 Second Estimator ... 8 - 14

9. PROC PRORATE - PRORATING ... 9 - 1

Purpose... 9 - 1

Description of the Method ... 9 - 1

Syntax Edit Checks .. 9 - 2

Prorating Algorithms ... 9 - 2

Basic Method Algorithm ... 9 - 2

Scaling Method Algorithm .. 9 - 3

Rounding Algorithm .. 9 - 3

Example ... 9 - 4

Bound Limitations ... 9 - 5

10. PROC MASSIMPUTATION - MASS IMPUTATION .. 10 - 1

Purpose... 10 - 1

Matching Fields ... 10 - 1

Other Parameters.. 10 - 1

Description of the Method ... 10 - 2

11. REFERENCES .. 11 - 1

Appendix A - Calculation of Medians and Quartiles ... A - 1

Appendix B - Pre-Defined Algorithms in Banff .. B - 1

INTRODUCTION 1-1

1. INTRODUCTION

Background

The Banff system for edit and imputation is a collection of specialized SAS procedures

developed at Statistics Canada, each of which can be used independently or put together in order

to satisfy the edit and imputation requirements of a survey. Data to be processed by Banff are

assumed to be numeric and continuous and the edits used in Banff must be expressed in linear

form. The user can choose whether to accept negative data or to reject it as invalid for each

execution of a procedure. The exceptions to this are the Historical and Ratio Methods in proc

Outlier, where the data must be positive. It is also assumed that some preliminary editing has

been done at data capture stage and that respondent follow-up is complete.

Banff is the replacement for the Generalized Edit and Imputation System (GEIS). The

methodology currently used in Banff is nearly identical to that of GEIS. However, there are

several major structural differences between the two systems. The first is that Banff is based on

the SAS architecture, while GEIS used Oracle as its underlying database structure. Also, the

individual SAS procedures in Banff are independent of one another, while the modules in GEIS

were linked. Thirdly, not only Banff is available on the UNIX computing platform like GEIS, but

it is also available in the Windows computing environment on the PC. Due to these differences,

Banff is inherently much simpler to use and more flexible than GEIS was.

Independence of SAS Procedures

The independence of the SAS procedures in Banff gives the user a great deal of freedom and

flexibility. However, this independence also entails more responsibility for the user in ensuring

that the inputs are of good quality, and that the outputs are interpreted and applied correctly. In

GEIS, the related data tables are updated automatically by the system after each step of

processing because all of the modules are linked together. That is, original data are simply

overwritten by new data. This imposes some difficult restrictions on the user, though, such as

manually creating backup copies of these tables if they want to trace the history of changes to the

data. The positive aspect is that because the modules are linked, the data flowing from one

module to the next is assured of being correct if the system is run without problem.

In Banff, each of the procedures accepts independent inputs provided either by the user or by

another Banff procedure. Thus, in the case of inputs being supplied by the user from outside the

system, the user has the responsibility of guaranteeing the quality of the input; Banff will attempt

to process whatever is provided.

As well, each of the procedures provides its own unique outputs. In the case of field status codes,

the format of the SAS datasets is very similar from one procedure to the next, but the codes will

be different. The data records output from Banff procedures contain only those data which have

been changed from the input data. Thus, the user has the responsibility of incorporating these

changes into their original data unless the user works with the Banff Processor (see the Banff 2.07

Processor User Guide).

BY Variables in Banff

Like regular SAS procedures, Banff procedures are able to process data in BY groups. For

example, rather than process separate datasets for each one of several industrial groups, a user

may include all industrial groups in a single dataset, and Banff will process each of these groups

independently according to the BY variable which identifies the industrial group.

INTRODUCTION 1-2

Purpose of this Document

The purpose of this document is to describe the methods used in each Banff procedure, to give

the methodological reasons for the choice of these procedures and to illustrate the application of

each procedure with simple examples. Advantages and disadvantages of the parameters

associated with each procedure are discussed, and examples of many special situations and how

to handle them in Banff are given. Methodologists and subject matter officers could use this

guide to understand the logic behind Banff so that they may be better able to evaluate their

different edit and imputation options.

It is not necessary to read the sections of this document in the order presented. The reader who is

interested in one particular procedure may refer to that section immediately without reading the

sections which precede it.

Other Available Documents

User guides have been written for each of the SAS procedures in Banff. They describe the syntax,

the parameters which can be specified, and options which exist. Examples are also provided.

They are all included in the document Banff 2.07 Procedures User Guide (Banff Support

Team, 2017) which can be obtained from the Banff support team.

Banff can be run in SAS, in SAS Enterprise Guide with the Banff tasks or, with the Banff

Processor. The Banff 2.07 Processor User Guide (Banff Support Team, 2017) explains how to

use the Banff Processor.

The Banff 2.06 Tutorial (Banff Support Team, 2014), which applies equally to both Banff

versions 2.06 and 2.07, provides the user with data based on an actual survey conducted at

Statistics Canada. The accompanying manual steps the user through the entire system. The

tutorial would be of interest to anyone who will actually run Banff or to anyone who prefers a

"hands-on" environment in which to become familiar with Banff.

Morabito and Shields (1992) give advice in the GEIS Applications User's Guide on how to fine-

tune edits, how to set appropriate parameters and how to customize procedures to meet the needs

of a particular application. This document is intended to be a reference guide to be used during

the detailed specification of the edit and imputation phase of a survey. Though this guide was

written for GEIS, many of the ideas and advice can in most instances be applied to Banff as well.

INTRODUCTION 1-3

Structure of this Document

Figure 1.1 shows the basic functions of Banff and the sections of this document which pertain to

each SAS procedure. In addition, Section 11 provides references and the appendices give the

details of the method of calculation of medians, quartiles and imputation estimators used in

Banff. A short description of each section follows Figure 1.1.

The Banff procedures are presented in the order that a user might apply them in the context of

carrying out all of the edit and imputation steps for a typical survey. One must keep in mind, as

stated earlier, that each of the procedures is an independent entity. Thus, the user can select

only those procedures which they would want to apply to the processing of their survey data.

Still, it is instructive to display the following diagram as a flow from one procedure to another,

from the typical early steps of editing to the completion of imputation.

Figure 1.1 The logical order of the Banff procedures in the context of survey

processing. Section numbers refer to sections of the document.

Edit Specification

and Analysis

(Section 2)

Edit Summary

Statistics Tables

(Section 3)

Error

Localization

(Section 5)

Outlier

Detection

(Section 4)

Deterministic

Imputation

(Section 6)

Donor

Imputation

(Section 7)

Imputation

Estimators

(Section 8)

Prorating

(Section 9)

Mass

Imputation

(Section 10)

INTRODUCTION 1-4

PROC VERIFYEDITS – Edit Specification and Analysis (Section 2)

When using the editing functions of Banff, a useful first step is to analyze the relationships which

characterize an acceptable record. These relationships, referred to as edits, are of great

importance to the proper performance of each procedure and to the quality of the data which are

produced by Banff. Possible sources of these relationships are analysis of the questionnaire,

analysis of existing data and subject matter knowledge. Section 2.1 Edit Specification describes

valid Banff edits, the formation of edit groups and the formation of data groups. Section 2 also

describes several functions (2.2 Check Edits, 2.3 Generate Extremal Points and 2.4 Generate

Implied Edits) which help the user to understand the specified conditions and to ensure that the

group of edits accurately represents the constraints which should be imposed on the data. In this

step it is the edits themselves which are analyzed. The user does not specify the action to be

taken when a record does not obey the specified relationships. In fact, respondent data are not

used in these procedures.

PROC EDITSTATS – Edit Summary Statistics Tables (Section 3)

If historical or preliminary data are available, a preview of failure rates may be obtained by

producing the Edit Summary Statistics Tables described in Section 3. This is the first procedure

in which there is an interaction between the linear edits and actual respondent data. The five Edit

Summary Statistics Tables give counts of edit and record status (pass, miss or fail) by variable

and by individual edit as well as the distribution of records which pass, miss or fail a given

number of edits. No information concerning which fields must be changed is given in this

procedure.

The information supplied by the Edit Summary Statistics Tables may be used to fine-tune the

edits or to estimate how many records will fail during the execution of the Error Localization

procedure (and thus to estimate the cost of associated computer runs). This procedure may also

be run after some or all of the imputation has been done in order to assess the effect of the

imputation process.

PROC OUTLIER – Outlier Detection (Section 4)

This procedure offers two methods to identify outlying observations, one described by Hidiroglou

and Berthelot (1986) and the Sigma-Gap method developed at Statistics Canada in the 1990s.

Values of selected variables are compared across records rather than comparing fields within

each individual record, as is done with the linear edit rules. The identification of outlying

observations may also be based on the change in a field from a previous period, if historical data

are available, or on the difference between the field of interest and an auxiliary field, if reliable

auxiliary data are available.

PROC ERRORLOC – Error Localization (Section 5)

When edit rules have been finalized and the respondent data are available, the Error Localization

procedure may be run. Section 5 describes how this procedure applies a group of edits to each

individual record. In the case of a record which does not satisfy the edits, Error Localization

detects which fields must be changed so that the record may be made to satisfy the edits while

replacing the smallest possible (weighted) number of original fields. This procedure identifies

the fields requiring imputation but does not perform any imputation.

Schiopu-Kratina and Kovar (1989) give a detailed description of the use of Chernikova's

algorithm in the solution of the Error Localization problem.

PROC DETERMINISTIC – Deterministic Imputation (Section 6)

Banff offers four types of imputation. Deterministic Imputation, described in Section 6,

identifies the cases in which there is only one possible value which will allow the record to pass

the original edits. Imputation is performed by this procedure in such cases.

INTRODUCTION 1-5

PROC DONORIMPUTATION – Donor Imputation (Section 7)

Section 7 describes Donor Imputation, a method which imputes all required fields of an

individual record by transferring the corresponding values from the nearest neighbour record.

Records imputed by donor imputation are guaranteed to pass the user-specified post-imputation

edits, which may or may not be the same as the original edits. Section 7.1 Prepare for Donor

Imputation describes the parameters and criteria which must be specified to provide the desired

imputation results. The identification of the nearest neighbour record is based on fields which

may be chosen by both the user and the system. Section 7.2 Find Matching Fields describes this

process. In order to remove the effect of scale, all the matching fields are transformed to a (0,1)

range, as described in Section 7.3 Transform Matching Fields. Section 7.4 Perform Donor

Imputation describes the method used by Banff to search for the nearest neighbour record.

PROC ESTIMATOR – Imputation Estimators (Section 8)

Imputation Estimators, described in Section 8, provide imputation for individual fields using a

variety of estimators. These estimators can be either mathematical expressions or derived from

linear regression models. Banff provides 20 estimator algorithms which are hard-coded directly

into the system, and the user also has the option of defining their own algorithms. Several

algorithms may be specified and applied sequentially so that back up procedures are available if

the preferred algorithm cannot be used in some individual cases.

PROC PRORATE – Prorating (Section 9)

Section 9 describes the Prorating procedure, which is able to analyze and adjust each record so

that the components of a sum add to a specific total. The user supplies edit rules, weights and

field status information which the process takes into account. A rounding mechanism ensures

that all the final data produced by Prorating conforms to the number of decimal places required

by the user.

PROC MASSIMPUTATION – Mass Imputation (Section 10)

Section 10 describes the Mass Imputation procedure. For operational reasons, in some surveys,

detailed information is collected only for a subsample (or second phase sample) of units selected

randomly from a large first phase sample. Classical estimates based on the subsample require the

derivation of subsampling weights. The derivation of such weights can be quite complex. The

Mass Imputation procedure applies an alternative technique which creates a complete rectangular

file for all of the first phase sample units by donor imputing the missing information for the non-

sampled units, after the editing and imputation has been completed for the second phase sample

units.

Updates to this Document

The major functions of Banff have been developed and are available for application in a

production environment. However, as there are ongoing improvements and fine-tuning, the

corresponding section(s) of this document will be updated. More recent versions of any section

may be obtained from:

 Generalized System Section

 International Cooperation and Corporate Statistical Methods Division

 Statistics Canada

Questions or comments on this document or on any aspect of Banff are also welcome. If you

need assistance, please contact the support team at: statcan.banff-banff.statcan@canada.ca.

mailto:statcan.banff-banff.statcan@canada.ca

EDIT SPECIFICATION 2-1

2. PROC VERIFYEDITS – EDIT SPECIFICATION AND ANALYSIS

2.1 EDIT SPECIFICATION

Purpose

In the Verifyedits procedure (Proc Verifyedits), the user specifies the relationships, or edits,

which determine if a record is acceptable. The user may specify the edits in a form which defines

either a "pass" or a "fail" condition or may mix the two methods. Individual edits are assigned to

one or more groups of edits which are analyzed in later procedures and are used in processing

throughout the rest of Banff.

Edits in Banff

Banff edits data which are numeric and continuous. The user specifies edit rules which must be

satisfied by the responses in the fields of each individual record. These edits must be linear

equalities or inequalities of the form:

bxa...xaxa

orbxa...xaxa

nn2211

nn2211

where x1 to x n are the n responses supplied to the survey by a sampled unit, and a1 to an and b are

constants specified by the user. If the user specifies the rejectnegative option, edits of the form xi

≥ 0 are automatically added to the group of edits specified by the user for each variable that is

being edited. Therefore, data which are negative or missing always fail at least one of these

positivity edits. The user must indicate whether each edit describes a pass or a fail condition, but

does not indicate the action to be taken when a record fails the edit. The following are examples

of edits as they would be specified by the user.

10xxx:FAIL

MILK_COWS*15SMILK_LITRE:PASS

STOTAL_SALEBEVERAGESFOOD:PASS

321

The first edit requires that the values in the variables FOOD and BEVERAGES add to the value

in the variable TOTAL_SALES for each record being edited. The second edit requires that the

value of MILK_LITRES be greater than or equal to 15 times the value of MILK_COWS. The

third edit would cause a record to fail if the sum of x1, x2 and x3 were less than 10.

Canonical Form

In Banff, all edits are stored internally in canonical form, that is, as a pass condition with all

variables sorted alphabetically and appearing to the left of either an "=" or a "≤" operator. The

user may enter edits in any form, but the system works only with canonical form and prints edits

in canonical form whenever a procedure includes a list of edits as part of its output. A function

which converts edits into canonical form is provided internally by Banff and is executed

whenever edits are input or modified. The following edits show some examples of valid and

invalid edits and the canonical form to which the edits are converted.

EDIT SPECIFICATION 2-2

ORIGINAL EDITS CANONICAL FORM

PASS: A > B + 3 (1) PASS: -A + B ≤ -3 (1)

PASS: C = D (2) PASS: C – D = 0 (2)

PASS: Z < A (3) PASS: -A + Z ≤ 0 (3)

PASS: M ≠ N (4) INVALID

 FAIL: A > B + 3 (5) PASS: A – B ≤ 3 (5)

 FAIL: C = D (6) INVALID

 FAIL: Z ≤ A (7) PASS: A – Z ≤ 0 (7)

 FAIL: N ≠ M (8) PASS: -M + N = 0 (8)

Note that strict inequalities are not allowed in the canonical form of pass condition edits and are

automatically replaced by "≤", regardless of what was specified by the user. For example, in edit

(3) the "<" entered by the user has been replaced be a "≤". Edits expressed as a fail condition

have "≤" replaced by "<". For example, the canonical form of edit (7) is equivalent to FAIL: Z <

A, even though edit (7) was specified as FAIL: Z ≤ A. It should also be noted that the "≠" is not

a valid relational operator for a pass condition and the "=" is not valid in a fail condition. These

restrictions exist because a set of edits must describe a convex region which contains its own

boundary. This is discussed further in Section 2.2.

Non-linear Edits

The requirement that the edits be linear is due to the linear programming techniques which are

used in several procedures of Banff. However, some types of non-linear edits may be linearized,

as is seen in the following two examples.

321 xxx Create new variables, II xlogy for I = 1, 2, 3 and the edit becomes

321 yyy . The variables 1x , 2x and 3x must be replaced by 1y , 2y and

3y , otherwise inconsistencies would result if any of 1x , 2x , 3x , 1y , 2y and

3y were imputed. All edits which previously involved 1x , 2x or 3x must be

replaced by edits in the 1y , 2y and 3y . This may be impossible if the edit in

question involves another variable, such as 4x .

0SALARIESthen0EMPIf This conditional edit may be re-expressed in the form

SALARIES ≥ .000001 EMP - a slightly stronger restriction than the original.

This ensures that if EMP is greater than zero, SALARIES must also be greater

than zero. If EMP is equal to zero, there are no restrictions on SALARIES.

Another possibility would be to put records with EMP equal to zero in a group

and process them separately from the records whose EMP is greater than zero.

Even though it is possible to linearize many non-linear edits, a survey which is considering

processing in Banff should not simply transform all existing edits into linear form. Instead, the

user should take the opportunity to examine the relationships which exist, or should exist, among

the survey variables and should base the edits on this, and other, information.

Edits for Processing Negative Values

Designing edits for processing negative values can present unexpected challenges and requires

special considerations that may produce unexpected results when not taken into account. For

more information and examples please see the document “Specifying Edits for Processing

Negative Values with Banff” (Banff Support Team, 2006).

EDIT SPECIFICATION 2-3

Edit Groups and Data Groups

In GEIS, the Error Localization module which identifies the fields requiring imputation can

process up to about 40 variables at a time. In larger surveys, it is usually necessary to divide the

variables into logical groups of about this size. The set of variables and the edits which define

the relationships to be satisfied by the variables form an edit group. In Banff, this restriction on

the number of variables does not exist. Still, it is sometimes useful to organize the edits into edit

groups for the sake of simplicity and efficiency. The user can then apply one edit group for each

execution of the Error Localization procedure.

The edits are later applied together to each record of a group of records. The simultaneous

application of a group of edits is fundamental to Banff and is an important benefit to the user

because it avoids the inconsistencies which can develop when edits are applied consecutively.

Such inconsistencies occur when a record is altered so that it passes an edit, then the "corrected"

record fails a subsequent edit and is changed in a way such that the first edit is no longer

satisfied. This cannot happen when all edits are applied together.

Data group refers to a set of records to which an edit group is applied. Data groups could be

defined according to the sampling strata, provincial boundaries, industrial classification, or any

other way. In Banff, multiple data groups can be processed in a single execution of a Banff SAS

procedure by using the BY statement.

Edits often change slightly from one geographical or industrial area to another, and separate edit

groups must be created whenever a different set of edits is required. For example, suppose a

survey has collected six variables, 1x , 2x , …, 6x , from respondents in several industries. Edit

groups similar to the following might be created.

 Edit Group: Edit Group: Edit Group:

 SERVICES RETAIL CONSTRUCTION

 321 xxx (1) 321 xxx (1) 321 xxx (1) …

 654 xxx (2) 654 xxx (2) 654 xxx (2) …

 63 x75x (3) 63 x80x (4) 63 x100x (5) …

Edits (1) and (2) are used in all industries and are assigned to all edit groups. The variable 3x

must be greater than or equal to a constant times 6x , but this constant varies from industry to

industry. Therefore, the user defines edits (3), (4), (5) etc. separately and assigns one of them to

each of the edit groups. Individual data groups are created with records from each industry, or

possibly with both an industrial and geographical breakdown.

Data groups do not have to be the same for each edit group and vice versa. Consider a survey

with data from four geographical regions and with variables pertaining to land, livestock and

crops. There are too many variables to be edited together in one group so the land, livestock and

crops variables are edited in three different groups.

EDIT SPECIFICATION 2-4

 Land Variables

2021 x...xx

Livestock Variables

602221 x...xx

Crops Variables

906261 x...xx

Region 1 Data

Group
Edit Group: Land_1 Edit Group: Livestock_1

Edit Group:

Crops_1234

Region 2 Data

Group
Edit Group: Land_2

Edit Group:

Livestock_234

Region 3 Data

Group
Edit Group: Land_3

Region 4 Data

Group
Edit Group: Land_4

Figure 2.1 Example of data groups and edit groups in an agriculture survey

One possible structure of data groups and edit groups is illustrated in Figure 2.1. The land

variables have slightly different edits according to the geographical region, so there are four land

edit groups defined and four data groups. The livestock variables from region 1 records have

their own set of edits. The livestock variables of records from the other regions are subject to

another set of edits, so a data group containing records from regions 2, 3 and 4 is defined and the

edit group Livestock_234 is used for the livestock variables in that data group. The crops

variables in all four regions are subject to exactly the same edits so another data group is defined

for all records and the Crops_1234 edit group is used to edit the crops variables for all records.

Once a group of edits has been created, the user has several tools available to ensure that the

group of edits accurately represents the conditions which should be imposed on the data. These

facilities are described in the next three sections:

 - 2.2 Check Edits

 - 2.3 Generate Extremal Points

 - 2.4 Generate Implied Edits

CHECK EDITS 2-5

2.2 CHECK EDITS

Purpose

This function in the Verifyedits procedure checks that the edits in a group of edits are consistent

with each other and, if so, identifies any redundant edits, deterministic variables or hidden

equalities. Once these features are identified, the minimal set of edits may be determined. No

respondent data are used in this procedure; it is the edits themselves which are analyzed.

Definitions

A group of edits involving n variables defines a region, called a feasible region or an acceptance

region, in the n-dimensional space. When the original survey values are substituted in the

equalities and inequalities which make up the group of edits, records which satisfy all the edits

fall inside the feasible region. Records which do not satisfy the edits fall outside the region. The

feasible region used by Banff must be convex and must include its boundaries. A pass condition

specified as a "<" is automatically changed to a "≤" in the canonical form so that the boundary is

included in the feasible region. A pass condition cannot be expressed as a "≠" relation because

the feasible region would be two separate regions on either side of the equality relation and

would not be convex.

A feasible region may be described by any one of an infinite number of different sets of edits. A

minimal set of edits contains the smallest number of edits necessary to define a certain feasible

region. The Verifyedits procedure provides the user with the information necessary to create a

minimal set of edits for the desired feasible region. This minimal set should be used in further

processing to improve efficiency.

The Check Edits function of the Verifyedits procedure also provides information which should

give the user a better understanding of the feasible region defined by a group of edits. In Banff

the identification of fields requiring imputation, as well as the success of some types of

imputation, depends on the group of edits so it is very important that the edits accurately

represent the conditions that the user wishes to impose on the data.

In this procedure, a group of edits is checked for consistency, redundancy, determinacy and

hidden equalities. These terms are defined and illustrated in this section, but the details of the

actual methods which are used in Banff have not been included here. Many of these methods

involve maximizing and/or minimizing a given edit subject to the other constraints. This is done

using the Revised Simplex Method algorithm, (Product Form Inverse). The Given's

Transformation is used to convert a matrix to triangular form when checking for hidden

equalities. The reader who is interested in a more complete description of the methods used in

the Verifyedits procedure of Banff should refer to Giles (1989).

CHECK EDITS 2-6

Consistent and Inconsistent Groups of Edits

A consistent group of edits defines a non-empty feasible region. An inconsistent group of edits

can never be satisfied by any data record because the group contains edits which contradict each

other. Figures 2.2 and 2.3 illustrate consistent and inconsistent groups of edits.

 Fig. 2.2 A consistent group of edits Fig. 2.3 An inconsistent group of edits

 x ≥ y (1) x ≥ y (1)

 x ≤ 5 (2) x ≤ 5 (2)

 y ≥ 1 (3) y ≥ 6 (4)

In Figure 2.2, the group of edits is consistent and defines a feasible region. In Figure 2.3, the

group of edits is inconsistent. No feasible region can be identified because there is no point

which can satisfy all three edits at the same time, although there exist regions which would

satisfy each of the three possible pairs of edits. In the above example it is possible to use a graph

to identify an inappropriate or incorrectly specified edit, but in a typical application the group of

edits involves many variables and it is not possible to inspect the feasible region graphically.

When Banff detects an inconsistent group of edits, it provides the user with a sub-group of edits

that must be removed so that the resulting group of edits is consistent.

Any inconsistent set of edits must be re-examined very carefully because the user has specified

constraints which are contradictory. The first step is to verify that all the edits have been entered

correctly since even a slight discrepancy can result in an edit which is very different from the one

which was intended. If all edits have been specified correctly, the user may whish to remove

edits singly or in combination in order to identify various consistent sets. The goal is not to

remove as few edits as possible, but to determine a consistent set of edits which represents the

relationships the user wishes to impose upon the data.

CHECK EDITS 2-7

Redundant Edits: Tight but Non-restrictive Edits

The Check Edits function also identifies edits which are redundant. This means that the edit

does not form part of the boundary of the feasible region and therefore imposes no restrictions on

the acceptable values. A special case of a redundant edit occurs with edits which are tight but

non-restrictive. These edits touch the boundary of the feasible region at a single point, but do

not restrict the allowable values, given the other edits. Neither redundant edits nor tight but non-

restrictive edits belong to the minimal set of edits needed to describe a feasible region. These

edits should be omitted from further processing to improve efficiency. Examples of redundant

and tight but non-restrictive edits are found in Figures 2.4 and 2.5.

 Fig. 2.4 Edit (4) is redundant Fig. 2.5 Edit (5) is tight, non-restrictive

 x ≥ y (1) x ≥ y (1)

 x ≤ 5 (2) x ≤ 5 (2)

 y ≥ 1 (3) y ≥ 1 (3)

 2x ≥ y (4) (redundant) 2x ≥ y + 1 (5) (tight, non-restrictive)

In Figure 2.4, edit (4) does not form part of the boundary of the feasible region and therefore is

redundant. Any record which satisfies edits (1), (2) and (3) will automatically satisfy edit (4). In

Figure 2.5, edit (5) touches the feasible region at one point, but still does not restrict the

acceptable values. Any record which satisfies edits (1), (2) and (3) will automatically satisfy edit

(5). In both cases, the user should study the specified edits and decide if the redundant edits and

the tight edits should be eliminated or if it is the other edits which are too restrictive. For these

examples, the user could specify a new group of edits consisting of edits (1), (2) and (3) or could

choose a new group consisting of edits (2), (3) and (4) for Figure 2.4 and edits (2), (3) and (5) for

Figure 2.5. In any case, the new group would be used for all further processing.

CHECK EDITS 2-8

Hidden Equalities

A group of edits may contain inequalities which, when taken with the restrictions imposed by the

other edits, imply an equality. These edits, referred to as hidden equalities, may not be obvious

when several variables are involved. The presence of hidden equalities usually indicates that the

edits are more restrictive than the user had realized. When Proc Verifyedits identifies hidden

equalities, the edits should be reexamined to determine if the hidden equality should be retained

or if one or more of the edits has been incorrectly specified. Consider the following group of

edits.

(4)1xx

(3)3xx

(2)2xxxx

(1)4xxxx

43

41

5432

5421

In this example, the Verifyedits procedure would detect that edits (1) and (2) form a hidden

equality and would identify edit (2) as a redundant hidden equality. The hidden equalities in

this group of edits may be seen more clearly after performing simple algebraic substitutions.

 Substitute edit (3) in edit (1) to obtain: 1xx 52

 Substitute edit (4) in edit (2) to obtain: 1xx 52

If the user decides that the edits are correctly specified, then both 1xx 52 and 1xx 52

must be true, which of course implies that 1xx 52 . Edits (1) and (2) should be removed and

replaced by 1xx 52 , or by a revised version of edit (1) or (2) restated as an equality. Any of

these edits, along with the existing edits (3) and (4), define the same feasible region as the

original edits. These three equivalent groups of edits are listed below.

Equivalent Groups of Edits

(4)1xx

(3)3xx

(5)1xx

43

41

52

(4)1xx

(3)3xx

(1a)4xxxx

43

41

5421

(4)1xx

(3)3xx

(2a)2xxxx

43

41

5432

On the other hand, the user may decide that the edits were not correctly specified and that, say,

the "≤" in edit (1) should be a "≥". If this change is made, the Verifyedits procedure would

identify edit (2) as tight but non-restrictive and would find no hidden equalities among the edits.

CHECK EDITS 2-9

Upper and Lower Bounds; Determinacy

The Check Edits function also produces upper and lower bounds for each variable. These

bounds are the maximum and minimum values that a variable could attain while remaining inside

the feasible region described by the edits. The bounds do not represent actual data values since

no respondent data are used in this procedure. The user should examine the bounds and consider

adding or removing edits if the bounds do not seem to be reasonable. As an illustration of

bounds, consider the following group of edits and the bounds which would be output by the

Verifyedits procedure.

)7(0x

)6(0x(3)8xx

)5(0x(2)6xx

)4(0x(1)10xxx

4

343

221

1421

 Variable Lower Bound Upper Bound

 1x 0 6

 2x 0 6

 3x 4 ***** UNBOUNDED

 4x 4 4 DETERMINANT

Both 1x and 2x have minimum values of 0 and maximum values of 6. The variable 3x cannot

take on valid values less than 4, but has no limit on its maximum value. The variable 4x has a

lower bound of 4 and an upper bound of 4 and must therefore be equal to 4 at all times. This

variable shows determinacy, that is, can take on only one possible value. Determinacy of one

variable may be caused by an incorrectly specified edit anywhere in the group, so the user should

review the entire group of edits to decide if the variable identified as deterministic should be

limited to one possible value in the group of records being processed.

The upper and lower bounds give no indication of the fact that valid values in one field of a

particular record may depend on the values in its other fields. In the above example, the edits do

not allow both 1x and 2x to take on their maximum or minimum values at the same time. In

fact, when one attains its maximum, the other is at its minimum, as is shown by their relationship

in edit (2).

GENERATE IMPLIED EDITS 2-10

2.3 GENERATE EXTREMAL POINTS

Purpose

This function of the Verifyedits procedure generates all the extremal points, or vertices, of the

feasible region described by a group of edits. These points represent the most extreme data

records which would be acceptable and may therefore give the user a better understanding of the

shape of the feasible region which is being specified.

Description of the Method

Each extremal point is a vertex of the feasible region and may be represented by its coordinates

in the n-dimensional space. Geometrically, extremal points occur at the intersection of n edits,

where n is the number of variables. In the survey context, extremal points may be thought of as

the most extreme that a respondent record is allowed to be while still being acceptable.

A complete description of the use of Chernikova's algorithm to generate all the extremal points of

the feasible region may be found in Schiopu-Kratina and Kovar (1989). A matrix is constructed

from the user-specified edits and the implied positivity edits. The matrix is transformed during

each of several iterations. In each iteration, columns are either retained or are taken in linear

combination with others to produce new columns. The iterations continue until all extremal

points have been produced or until all extremal points with cardinality less than or equal to a

user-specified limit have been produced. Here, cardinality refers to the number of non-zero

coordinates of an extremal point. For example, the point (5, 0, 10) has a cardinality of two. The

points easiest to interpret are often those which have many zero values because, in a sense, these

variables are eliminated from consideration. So the user may choose to restrict the generation of

extremal points to those whose number of non-zero coordinates is less than or equal to a user-

specified limit. Limiting the cardinality may also reduce the execution time.

There is a theoretical upper bound to the number of extremal points associated with an edit group,

but the actual number of extremal points is usually much smaller than this bound. Both the actual

number and the theoretical bound are often very large, even for moderately sized edit groups.

More details may be found in Giles (1989).

GENERATE IMPLIED EDITS 2-11

Example of Extremal Points

Consider the following example of edits for a group of small businesses in a certain industrial

sector.

Examination of the three extremal points shown in Figure 2.6 causes the user to question the

point (20,0). Could a business have 20 employees and no salaries? If the user decides this is not

acceptable, another edit could be added to impose a minimum average salary. A revised group of

edits would be created and put through the Generate Canonical Form, Check Edits and Extremal

Points functions of Proc Verifyedits. With the new edit group shown in Figure 2.7, the point

(20,0) would be outside the feasible region and a respondent record with these values would be

identified as unacceptable in a later procedure.

2000),(20

20000),(20

0),(0

POINTSEXTREMAL

0 SALARY

0 EMP

EMP010SALARY

EMP1000SALARY

20EMP

EDITS REVISED

2ofycardinalit20000),(20

0ofycardinalit0),(0

POINTSEXTREMAL

edit)positivity(implied0SALARY

edit)positivity(implied0EMP

EMP1000SALARY

20EMP

EDITSORIGINAL

Figure 2.7 Extremal Points of the

Revised Group of Edits

Figure 2.6 Extremal Points of the

Original Group of Edits

GENERATE IMPLIED EDITS 2-12

2.4 GENERATE IMPLIED EDITS

Purpose

This function of the Verifyedits procedure generates additional edits which are implied by a

group of edits. These implied edits may be examined to ensure that all relationships implied by

the group of edits are acceptable to the user.

Description of the Method

The concept of implied edits was introduced in Fellegi and Holt (1976). In Banff, an implied

edit is the result of a linear combination of k edits in which at least (k-1) variables have been

eliminated. Implied edits are always redundant and therefore should not be added to the minimal

set of edits. However, implied edits may involve fewer variables than the edits specified by the

user and so may bring to light relationships of which the user was unaware.

A complete description of the use of Chernikova's algorithm to generate the implied edits may be

found in Schiopu-Kratina and Kovar (1989). A matrix is constructed from the user-specified

edits and the positivity edits. The transpose of this matrix undergoes successive transformations

as each of its rows is processed. In each iteration, columns are taken in linear combination with

others to produce additional columns. These iterations continue until all rows have been

processed or until the number of implied edits produced exceeds a user-specified limit. The user

may wish to apply this limit because a large number of implied edits may be generated from a

relatively small number of edits, especially if an equality edit is present.

Example of Implied Edits

Consider the following group of two user-specified edits and three positivity edits added by the

system.

edit)y (positivit(5)0x

edit)y(positivit(4)0x

edit)y(positivit(3)0x

(2)5xxx

(1)103x2xx

3

2

1

321

321

Edits (1) and (2) may be combined to produce implied edit (6) which may itself be combined

with edit (3) to produce edit (7).

(6)205x3x

2(2)102x2x2x

(1)103x2xx

31

321

321

(7)205x

3(3)03x

(6)205x3x

3

1

31

It is common to have a very large number of implied edits. This small edit group of two

inequalities and three positivity edits generates nine implied edits. The complete list of implied

edits is shown as it would appear in the output of the procedure. Note that the leading coefficient

of the first variable of each equation is always either +1 or -1, so, for example, edit (7) appears as

4x3 instead of 205x 3 as it was derived above.

GENERATE IMPLIED EDITS 2-13

List of Implied Edits

5x

5x

102xx

5xx

(7)4x

5xx

(6)6.666671.66667xx

51.5xx

5xx

1

2

21

21

3

31

31

32

32

In examining the implied edits, the user may find that there are relationships between variables

which are unacceptable. If this is the case, the original edits should be examined and modified

and the new set of edits should be put through the Generate Canonical Form, Check Edits,

Generate Extremal Points and Generate Implied Edits functions of Proc Verifyedits.

EDIT SUMMARY STATISTICS TABLES 3-1

3. PROC EDITSTATS – EDIT SUMMARY STATISTICS TABLES

Purpose

This procedure applies a group of edits to respondent data records and determines if each record

passes, misses or fails each edit. The status codes created during this process are used only in

this procedure and are not passed on to other procedures. Five tables summarizing the status

codes are produced and may be used to fine-tune the group of edits, to estimate the resources

required for later procedures or to evaluate the effects of imputation. When a record fails an edit,

there is no attempt to identify how to change the record so that it would pass.

Description of the Method

For an edit group of m positivity edits and n user-specified edits with no redundant edits, a total

of m + n + 1 status codes is assigned to each record. Redundant edits should be removed from

the edit group by this stage, but if they are still included, the number of status codes to be

generated will be reduced because redundant edits do not appear in the tables. The following

procedure is performed independently for each data record.

- One status code is assigned to the data record for each edit, including the positivity

edits. There are m + n of these codes in total. The status is:

- PASS, if the record passes the edit,

- MISS, if the record has one or more missing fields involved in the edit, or

- FAIL, if the record fails the edit because of one or more non-missing values.

- An overall record status is derived from the m + n status codes which have been

assigned to the record based on the results of the application of the individual edits to

that record. The status is:

- PASS, if each edit status is PASS, i.e., if the record has passed all the edits in the

group,

- MISS, if one or more edit status is MISS and no edit status is FAIL, i.e., each edit

which the record did not pass involved missing fields, or

- FAIL, if one or more edit status is FAIL, i.e., if the record failed edits because of non-

missing values and possibly had failures due to missing values.

Example of Creation of Edit Status Codes

Consider the following group of edits and respondent records.

 Positivity Edits User Edits

(3)0x

(2)0x

(1)0x

3

2

1

(7)9xxx

(6)xx

(5)5x

(4)x1x

321

32

1

21

There are three positivity edits and four user-specified edits, so there are 3 + 4 + 1 = 8 status

codes to be assigned to each record. These codes are marked as Edit Status (1) to (7) and Overall

Status in the following table.

EDIT SUMMARY STATISTICS TABLES 3-2

 Respondent Records Edit Status Overall

Status 1x 2x 3x (1) (2) (3) (4) (5) (6) (7)

record 1 4 3 2 P P P P P P P P

record 2 4 3 missing P P M P P M M M

record 3 6 3 2 P P P P F P F F

record 4 6 3 missing P P M P F M M F

Record 1 passes the edits and therefore has a PASS status for all seven edits and for the overall

status. Record 2 passes all the edits except those involving the variable x 3 which is missing.

Therefore edits (1), (2), (4) and (5) have PASS status and edits (3), (6) and (7) have MISS status.

The overall status for record 2 is also MISS. Record 3 has no missing values, but fails edits (5)

and (7). All edits have a PASS status except edits (5) and (7) which have FAIL status, so the

overall status is FAIL. Record 4 fails edit (5) due to "incorrect" non-missing values and fails

other edits due to missing values. Edits (1), (2) and (4) have PASS status, edit (5) has FAIL

status and edits (3), (6) and (7) have MISS status. The overall status of record 4 is FAIL because

FAIL takes precedence over the MISS status code when deriving the overall record status code.

Example of the Tables

A short description of the five Edit Summary Statistics Tables is given here, along with the tables

which would be produced for the edits and data records used in the above example of the creation

of status codes. The user should keep in mind that tables 1-1 and 1-2 are based on the edit status

codes while table 1-3 is based on the overall record status codes. Table 2-1 is based on edit status

codes which have been assigned to each field in the record according to rules described below.

Table 2-2 is based on the record status codes which have been assigned to each field of the record

according to rules described below.

TABLE 1-1

COUNTS OF RECORDS THAT PASSED, MISSED AND FAILED FOR EACH EDIT

EDITID OBS_

PASSED

OBS_

MISSED

OBS_

FAILED

POSITIVITY EDIT 1x 4 0 0

POSITIVITY EDIT 2x 4 0 0

POSITIVITY EDIT 3x 2 2 0

EDIT (4) 4 0 0

EDIT (5) 2 0 2

EDIT (6) 2 2 0

EDIT (7) 1 2 1

Table 1-1 gives the number of records which passed, missed or failed each edit. The table is

based on counts of the PASS, MISS and FAIL edit status codes which occur for each individual

edit. For any given edit, each record is counted as passed, missed or failed, so the total in each

row should be the same as the total number of records.

For example, for edit (1), the positivity edit on the variable x 1, all four records passed so all four

are counted in the " OBS_PASSED" column and no records are counted in the " OBS_MISSED"

or " OBS_FAILED" columns. On the other hand, only record 1 passed edit (7), while records 2

and 4 had edit status MISS and record 3 failed. The last line of Table 1-1 counts one under "

OBS_PASSED", two under " OBS_MISSED" and one under " OBS_FAILED".

From Table 1-1, the user may determine if records tend to fail or miss some edits more often than

EDIT SUMMARY STATISTICS TABLES 3-3

others. This could indicate that the edits are too restrictive or that the data are of poor quality.

TABLE 1-2

DISTRIBUTION OF RECORDS THAT PASSED, MISSED AND FAILED K EDITS

NUMBER OF EDITS

(K_EDITS)

OBS_

PASSED

OBS_

MISSED

OBS_

FAILED

0 0 2 2

1 0 0 1

2 0 0 1

3 1 2 0

4 1 0 0

5 1 0 0

6 0 0 0

7 1 0 0

TOTAL RECORDS 4 4 4

Table 1-2 gives the distribution of records which pass, miss or fail a given number of edits. The

table is based on the edit status codes and gives the number of records for which each status code

occurs zero times, once, twice, etc. Each record is counted once in each column (in the row

corresponding to the number of edits it failed, missed or passed) so that the total of each column

is equal to the number of records.

In this example, the first row of Table 1-2 indicates that there were no records which passed zero

edits, while two records missed zero edits and two records failed zero edits. Moving down the

table to the row with "3" in the left-hand column, one can see that one record passed three edits,

two records missed three edits and no records failed three edits. The line beginning with "7" says

that one record passed all seven edits, no records missed seven edits and no records failed seven

edits.

From Table 1-2 the user may determine if the data being analyzed consist of a moderate number

of records which pass all edits and a moderate number of records which fail a few edits, or if the

data consist of a large group of records which pass all the edits and a much smaller group of

records which fail most or all of the edits.

EDIT SUMMARY STATISTICS TABLES 3-4

TABLE 1-3

OVERALL COUNTS OF RECORDS THAT PASSED, MISSED AND FAILED

OBS_

PASSED

OBS_

MISSED

OBS_

FAILED

OBS_

TOTAL

1 1 2 4

Table 1-3 gives the number of records with PASS, MISS or FAIL overall record status. Each

record is counted once so the single row of this table should add to the total number of records.

In the example being used here, one record had a PASS record status code, one had a MISS and

two had record status codes of FAIL. Note that records which have a FAIL record status may

have one or more MISS edit status codes as well as at least one FAIL edit status code.

The sum of the OBS_MISSED and OBS_FAILED cells of Table 1-3 gives a preview of the

number of failures to expect when the Error Localization procedure is run.

TABLE 2-1

COUNTS OF EDIT APPLICATIONS OF STATUS PASS, MISS OR FAIL THAT INVOLVE

EACH FIELD

FIELDID EDIT_

APPLIC_

PASSED

EDIT_

APPLIC_

MISSED

EDIT_

APPLIC_

FAILED

EDIT_

APPLIC_

NOT

INVOLVED

EDITS_

INVOLVED

x 1 11 2 3 12 4

x 2 11 4 1 12 4

x 3 5 6 1 16 3

Table 2-1 gives the number of times each variable was involved in an edit which passed, missed

or failed. For this tabulation the PASS, MISS and FAIL edit status codes which were generated

for a particular record and edit are assigned to each field which is involved in the edit. A NOT

INVOLVED code is assigned if the variable did not appear in the edit. Then the occurrences of

these codes are summed for each variable. For a given row of the table (i.e., a given variable),

each record is counted with each edit, so the total of all cells except the last is the number of

records times the number of edits. The last column gives a count of the number of edits in which

the particular variable is involved.

In the example being used here, x 1 was involved in a PASS edit status code 11 times - record 1 in

edits (1), (4), (5) and (7), record 2 in edits (1), (4) and (5), record 3 in edits (1) and (4) and record

4 in edits (1) and (4). The variable x 1 was involved in a MISS edit status code twice - edit (7)

with records 2 and 4 - and was involved in a FAIL edit status code three times - record 3 with

edits (5) and (7) and record 4 with edit (5). There are three edits in which x 1 was not involved,

giving a count of 3 edits x 4 records = 12 edit applications which did not involve x 1. The last

column gives the number of edits which did involve x 1. There are four records in this example,

so there should be 4 x 4 = 16 edit applications which involved x 1, and this should always be

equal to the sum of the first three columns.

EDIT SUMMARY STATISTICS TABLES 3-5

From Table 2-1, the user may judge if some variables tend to be included in edits which fail or

miss more often than others.

TABLE 2-2

COUNTS OF RECORDS OF STATUS PASS, MISS, OR FAIL FOR WHICH FIELD j

CONTRIBUTED TO THE OVERALL RECORD STATUS

FIELDID

OBS_

PASSED

OBS_

MISSED

OBS_

FAILED

OBS_NOT_

APPLICABLE

x 1 1 1 2 0

x 2 1 1 1 1

x 3 1 1 1 1

Table 2-2 gives the number of times each variable contributed to the overall record status. For

this tabulation, the PASS, MISS and FAIL overall record status codes are assigned to each field

according to the following rules.

- If the overall record status is PASS then the record passed all edits, all

fields must be good and all fields are assigned a PASS status for the

purposes of this table.

- If the overall record status is MISS, then MISS and PASS are the only

possible values for edit status. The fields involved in the edits with

status MISS are assigned a MISS and the fields not involved in any edits

with status MISS are assigned a NOT APPLICABLE status.

- If the overall record status is FAIL, then at least one edit status must be

FAIL and one or more edit status may be MISS. The variables involved

in edits with FAIL edit status are assigned a FAIL and the variables not

involved in any edit with a FAIL edit status are assigned a NOT

APPLICABLE status.

Each record is counted once for each field, so the row total is equal to the number of records. For

example, since record 1 passed all edits, it is counted under "OBS_PASSED" for all variables.

Record 2 has a MISS record status and all its fields are involved in at least one edit which had a

MISS status, so record 2 is counted in the "OBS_MISSED" column for all variables, even though

only x 3 is actually missing on the respondent data record. Record 3 has a FAIL record status and

each of its fields is involved in at least one edit which has a FAIL edit status. Therefore, record 3

is counted in the "OBS_FAILED" column for all variables. Record 4 also has a FAIL record

status. The variable x 1 is involved in edit (5) which has a FAIL edit status, so it is counted in the

"OBS_FAILED" column for x 1. The remaining two fields are not involved in any edits which

have a FAIL edit status, so record 4 is counted in the "OBS_NOT_APPLICABLE" column for

the rows referring to x 2 and x 3.

From Table 2-2, the user may determine if some variables tend to contribute to the MISS or FAIL

record status more often than others. It should be noted that this table counts all fields involved

in a FAIL or MISS edit as contributing to the overall record FAIL or MISS status. The Error

Localization procedure will likely identify a subset of these fields as requiring imputation and

allow the other fields involved in the edit to remain as they are.

EDIT SUMMARY STATISTICS TABLES 3-6

Uses of the Edit Summary Statistics Tables

This is the first procedure in which there is an interaction between the linear edits and actual

respondent data; in the Verifyedits procedure, the linear edits themselves are examined with no

reference to data. In the Outlier Detection procedure, which may be run either before or after the

production of the Edit Summary Statistics Tables, the data are edited using a statistical edit

whose parameters are based on the data themselves, not on the linear edit rules specified by the

user.

The Edit Summary Statistics Tables have three major uses during edit and imputation processing.

These uses and the steps at which they occur are discussed in turn.

The first major use is to assess the suitability of individual edits or of a group of edits by

observing the failure rates which occur when the edits are applied to a set of data records. A high

failure rate for one particular edit might indicate that the user should modify that edit by changing

the constants or by altering the form of the edit. If this is done, it would then be necessary to

change the edit, regenerate the canonical form and resubmit the new edit group to edit analysis.

It is also possible that anomalies observed in the Edit Summary Statistics Tables do not represent

problems with the group of edits itself. For example, if one variable is involved in a large

percentage of the edit failures, it might indicate that a review should be done of the questionnaire

definitions or of the collection procedures used in the field. Of course it might not be possible to

do this during the later stages of a survey.

When the Edit Summary Statistics Tables are being run in order to fine-tune the edits, it is likely

that the final survey data are not yet available. The respondent records used in this procedure

may be actual data taken from a pilot study or from historical sources. It is also possible to use

data which have been generated by the user outside of Banff.

The second major use of the Edit Summary Statistics Tables is to document the status of the

respondent data as they enter Banff and to estimate how many records will fail during Error

Localization. This information would be used to predict how much computer time will be

required for the execution of Error Localization. This step is done after the respondent data have

been received and after the edits have been finalized.

The third major use is to assess the imputation process. This could be done between applications

of imputation methods or after all imputation has been completed. The Edit Summary Statistics

Tables produced at this stage would be compared to those produced before imputation began.

The user should consult the GEIS Applications User's Guide for more details concerning the

tables and their interpretation.

Edits for Processing Negative Values

Designing edits for processing negative values can present unexpected challenges and requires

special considerations that may produce unexpected results when not taken into account. For

more information and examples please see the document “Specifying Edits for Processing

Negative Values with Banff” (Banff Support Team, 2006).

OUTLIER DETECTION 4-1

4. PROC OUTLIER – OUTLIER DETECTION

Purpose

This procedure offers two methods to identify outlying observations, one described by Hidiroglou

and Berthelot (1986) and the Sigma-Gap method developed at Statistics Canada in the 1990s.

Values of selected variables are compared across records rather than comparing fields within each

individual record, as is done with the linear edit rules. The user may also choose to identify values

which are not extreme enough to be considered in error, yet are sufficiently unusual that they

should not be used later in the imputation procedures. Outlier Detection may be limited to a

selection of variables; it is not necessary to process all variables.

Options in Outlier Detection

The Outlier Detection procedure can identify two types of values. One, called Outlier Detection

Imputation (ODI), refers to values which are so different from the other values of the same

variable that they can be considered to be in error and should be imputed in a later procedure.

Values of the second type are called Outlier Detection Exclusion (ODE). These are values

which are not sufficiently extreme to be considered in error, but are unusual enough that the user

might not wish to donate them later in the Donor Imputation procedure or might not wish to have

them contribute to the parameters (e.g., means, regression parameters) used by the imputation

estimators. Parameters are defined so that the Outlier Detection procedure will identify ODIs,

ODEs, or both. In both the Hidiroglou-Berthelot and Sigma-Gap methods, the bounds used to

define these values are not fixed, but are a function of user-specified parameters and of the data

themselves. In the output field status SAS dataset, ODI values are flagged as FTI (Field to

Impute), while ODE values are flagged as FTE (Field to Exclude).

Both Hidiroglou-Berthelot and Sigma-Gap methods can detect outliers from values on the right

(ODER, ODIR), on the left (ODEL, ODIL), or on both sides. Use the Banff parameter SIDE to

specify on which side you want to perform outlier detection.

The MINOBS parameter determines the minimum number of records required for each By group

to run outlier detection. MINOBS must be greater or equal to 3 for the Hidiroglou-Berthelot

method, 5 for Sigma-Gap. The system will not detect any outlier if the number of records is equal

to 3 for the Hidiroglou-Berthelot method. Be cautious with the interpretation of the results for By

groups with less than 10 observations. The Banff Support Team recommends a minimum of 10

observations per By group for better results.

The REJECTZERO parameter will remove zero values before the detection of outliers is done.

The opposite parameter, ACCEPTZERO, will allow zero values to be included in all calculations

involving current data (see next paragraph). REJECTZERO is the default value when detecting

outliers with ratios and historical trends. ACCEPTZERO is the default when detecting outliers

with current data. Zero and negative values are never included in the detection of outliers using

ratios and historical trends.

Outlier detection can be performed in three ways, using either the Hidiroglou-Berthelot or the

Sigma-Gap method: with Current data, with Ratios and with Historical Trends. The appropriate

choice may be dictated by the data to be examined. Next, the Hidiroglou-Berthelot method is first

described in detail followed by the Sigma-Gap method.

OUTLIER DETECTION 4-2

Hidiroglou-Berthelot Method

If data are available from only one period and no appropriate and reliable auxiliary variable is

available, then the Current data must be used and each value of the selected variable is compared

to bounds which are based on the values in the other records. If an appropriate and reliable

auxiliary variable is available, then the user may choose to analyse the selected variable with

Ratios. When using Ratios, Banff compares a function of the ratio of the selected variable and the

auxiliary variable in each record to bounds based on the same function of ratios from the other

records. Historical Trends is a special case of detecting outliers using Ratios in which the

auxiliary value is the historical value of the selected variable and which compares the selected

variable's trend over time in each record to bounds based on trends from the other records.

Therefore, if historical data are available, the user may choose to use Historical Trends instead of

Ratios.

Description of the Hidiroglou-Berthelot Method Using Current Data

The following steps are performed for each selected variable.

 - Calculate the first quartile, Q1, the median, M, and the third quartile, Q3, of the variable

being processed. (See Appendix A for a definition of median and quartiles and a

description of the method used by Banff for their calculation.) If no exclusions have been

specified, these values are based on all records in the data group. Otherwise, the

calculations are based on the subset of records which remains after all records satisfying

the exclusion clause have been removed.

- Calculate d Q1 and d Q3. These are normally the distances from the median to the first and

third quartiles, respectively. Each of these distances is replaced by a user-controlled

default when it is smaller than that default. This occurs when the median and one or both

of the quartiles are so close that the calculated distance(s) would be very small. The

default value is a function of the median and the Minimum Distance Multiplier, a user-

specified parameter, referred to as A in the following equations.

)|M*A|M,Q3(Maxd

)|M*A|Q1,M(Maxd

Q3

Q1

 - Calculate the intervals into which values to be imputed and values to be excluded fall.

These intervals are a function of d Q1, d Q3 and of the user-specified Multiplier for

Imputation Interval and Multiplier for Exclusion Interval parameters. These multipliers

are referred to as C I and C E in the following equations which define the ODI and ODE

regions. The user may specify values for either or both of C I and C E. If both are

specified, then C I must be greater than C E. If C I is not specified then there will be no

values identified as ODI, although there may be ODEs. If C E is not specified, then there

will be no values identified as ODE, although there may be ODIs.

Q3Ii

Q1Ii

dCMx

ordCMx
ifimpute:ODI

OUTLIER DETECTION 4-3

Q3EiQ3I

Q1EiQ1I

dCMxdCM

ordCMxdCM
ifexclude:ODE

- Identify the records which fall into the ODI and ODE ranges. Write the results to the

output field status SAS dataset as FTI and FTE flags, respectively.

Example of the Hidiroglou-Berthelot Method Using Current Data

Suppose that x, the variable to be examined by Outlier Detection, has only current data with a

frequency distribution as shown in Figure 4.1 and that no records are to be excluded from the

calculations. The 24 values of x in ascending order are:

 -1, 4, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 11, 11, 11, 12, 13, 13, 15 and 19.

As described in Appendix A, the first quartile is .75 times the sixth observation plus .25 times the

seventh, the median is the average of the twelfth and thirteenth values and the third quartile is .25

times the eighteenth observation plus .75 times the nineteenth.

The median is 9, the first and third quartiles are 8 and

11 respectively and the distances from the median to

the quartiles are 1 and 2. The bounds are calculated

with the user-specified values of C I = 6 and C E = 4

for the imputation and exclusion multiplier

parameters, respectively. Therefore, any values

which are further from the median than 6 times the

distance from the median to the corresponding

quartile are identified as values to be imputed. In this

example, the observation with a value of -1 would be

identified as requiring imputation (ODI) because it is

at a distance greater than 6 times the distance from

the median to the first quartile. There would be no

values identified as requiring imputation due to being

too large, since there are no values further than 6

times the distance from the median to the third

quartile.

 21269

3169

21x

or3x
ifimpute

i

i

Values which are less than 6 but more than 4 times the distance from the median to the quartiles

are identified as values to be excluded. In this example, the observations with values of 4 and 19

would be identified as ODEs because they are between 4 and 6 times their respective quartile

distances from the median.

 17249

5149

17x21

or5x3
ifexclude

i

i

Figure 4.1 Example with Current data

OUTLIER DETECTION 4-4

The bounds used by the Hidiroglou-Berthelot method using Current data are linear with respect to

the variable being investigated, so the user could create edits using the bounds calculated by the

Outlier Detection procedure. These edits could then be incorporated directly in the set of linear

edits.

Description of the Hidiroglou-Berthelot Method Using Ratios

The following steps are performed for each selected variable.

 - For each record in which 0x i and 0yi , calculate
i

i
i

y

x
r , the ratio of ix , the value

of the selected variable in the ith record, to iy , the corresponding value of the auxiliary

variable in the ith record.

 - Transform the r values so that an n-fold difference between ix and iy is the same on

either side of the median difference.

iMi
M

i

MMi
i

M

i

rratiostheofrr1
r

r

mediantheisrwhererr0
r

r
1

s

- Calculate the effect, ie , of each record.

 exp
iiii y,xmaxse

Calculations similar to those done with the Current data previously are then performed on these

transformed e values. The user may specify any value between 0 and 1 for exp, the exponent. An

exponent of 0 treats all relative differences the same, regardless of the size of the unit, while an

exponent of 1 gives greater importance to small deviations of large units.

 - Calculate the first quartile, the median and the third quartile of the transformed e values of

the variable being processed. If no exclusions have been specified, the e values are based

on all records whose values of the selected and auxiliary variables are greater than zero.

Otherwise, the calculations are based on the subset of records which remains after all

records satisfying the user-specified exclusion clause have been removed.

 - For the transformed e values, calculate Q1d and Q3d . These are normally the distances

from the median to the first and third quartiles, respectively. Each of these distances is

replaced by a user controlled default when it is smaller than that default. This occurs

when the median and one or both of the quartiles of the transformed e values are so close

that the calculated distance(s) would be very small. The default value is a function of the

median and the Minimum Distance Multiplier, a user-specified parameter referred to as A

in the following equation.

 |MA|,MQ3Maxd

|MA|,Q1MMaxd

Q3

Q1

- Calculate intervals based on the transformed values. These intervals will be used to

identify the values to be imputed and the values to be excluded. The intervals are a

OUTLIER DETECTION 4-5

function of the distances from the median to the quartiles and of the Multiplier for

Imputation Interval and Multiplier for Exclusion Interval parameters specified by the user.

These multipliers are referred to as C I and C E in the following equations which define the

ODI and ODE regions. The user may specify values for either or both of C I and C E. If

both are specified, then C I must be greater than C E. If C I is not specified then there will

be no values identified as ODI, although there may be ODEs. If C E is not specified, then

there will be no values identified as ODE, although there may be ODIs.

Q3Ii

Q1Ii

dCMe

ordCMe
ifimpute:ODI

Q3EiQ3I

Q1EiQ1I

dCMedCM

ordCMedC-M
if exclude:ODE

- Identify the records which have outlier and/or exclusion values. Write the results to the

output field status SAS dataset as FTI and FTE flags, respectively.

When detecting outliers using Ratios, the calculated bounds are linear in the transformed e

variable, but nonlinear in the original variable, unless an exponent of 0 was used. The example

presented below using Historical Trends is an example of the Hidiroglou-Berthelot method using

Ratios in the special case where the auxiliary values are the historical values of the selected

variable.

Description of the Hidiroglou-Berthelot Method Using Historical Trends

This is a special case of the Hidiroglou-Berthelot method using Ratios in which the auxiliary

variable, iy , is the selected variable from the previous period. The steps performed when using

Historical Trends are the same as those performed when using Ratios with the current value of the

selected variable being denoted by itx and the historical value of the selected variable being

denoted by 1tix , where the second subscript denotes the time period, so that the ratio for the ith

record is
 1ti

it
i

x

x
r

 .

Example of the Hidiroglou-Berthelot Method Using Historical Trends

Consider an example with 22 observations in each of two time periods. Rather than reproducing

all the calculations done by Banff, the results of Outlier Detection under various combinations of

parameters are presented graphically. The following table gives the values of respondent data (tx

and 1tx), along with r, the ratio of the current to the previous time period and s, the transformed

values. The results of Outlier Detection are presented in Figures 4.3a, 4.3b, 4.4a, 4.4b, 4.5a and

4.5b. Figure 4.6 shows the results of the Hidiroglou-Berthelot method using Current data applied

to only the data from the current time period. The following observations are sorted in ascending

order according to their values of r.

OUTLIER DETECTION 4-6

Ident tx 1tx r s Ident tx 1tx r s

01 60 160 0.375 -1.667 13 180 180 1.000 0.000

02 15 35 0.429 -1.333 14 200 200 1.000 0.000

03 150 192 0.781 -0.280 15 90 85 1.059 0.059

04 130 150 0.867 -0.154 16 100 85 1.176 0.176

05 40 45 0.889 -0.125 17 165 140 1.179 0.179

06 160 175 0.914 -0.094 18 30 21 1.429 0.429

07 70 75 0.933 -0.071 19 300 200 1.500 0.500

08 70 71 0.986 -0.014 20 100 50 2.000 1.000

09 40 40 1.000 0.000 21 195 97 2.010 1.010

10 62 62 1.000 0.000 22 160 60 2.667 1.667

11 75 75 1.000 0.000 23 5 0 drop

12 100 100 1.000 0.000 24 -10 5 drop

The effect of the s transformation may be seen by examining records 01 and 22. The value of x in

record 01 has decreased from 160 in time (t-1) to 60 in time t and the value of x in record 22 has

increased from 60 to 160 over the same period. These are similar changes and yet their

untransformed r values, 0.375 and 2.667, are not the same distance from the median r value of

1.000. The transformation to the s values of -1.667 and 1.667 makes these similar changes

symmetric about 0.0, the median of the s values.

Record 23 is ignored by the Hidiroglou-Berthelot method using Historical Trends because it has a

zero in the historical data table. Record 24 is ignored because it has a negative value in the current

time period.

 Example using Historical Trends - Exponent = 0

 Figure 4.3a Current vs Previous Obs Figure 4.3b Ratio vs Maximum Value

 Exponent = 0 Exponent = 0

OUTLIER DETECTION 4-7

Figure 4.3a shows each current observation, Itx , plotted against its corresponding historical value,

 1tIx and Figure 4.3b shows the ratio of these two values plotted against the maximum of the

values. In both figures, the Hidiroglou-Berthelot method with Historical Trends was used with an

exponent of 0 and with multipliers of 6 and 3 for the imputation and exclusion bounds.

Observations outside the heavy lines require imputation. In this example there are three such

observations, each identified by an "*". Values between the heavy line and the lighter line are

fields to exclude. Here there are two such values, identified by a "+". Note that the bounds are

straight lines in both graphs when an exponent of zero is used.

 Example using Historical Trends - Exponent = 1

 Figure 4.4a Current vs Previous Obs Figure 4.4b Ratio vs Maximum Value

 Exponent = 1 Exponent = 1

Figure 4.4a shows each current observation, Itx , plotted against its corresponding historical value,

 1tIx and Figure 4.4b shows the ratio of these two values plotted against the maximum of the

values. In both figures, the historical trend method was used with an exponent of 1 and with

multipliers of 6 and 3 for the imputation and exclusion bounds. Observations outside the heavy

lines require imputation. In this example there are five such observations, each identified by an

"*". Values between the heavy line and the lighter line are fields to exclude. There are two such

values, identified by a "+". Note that the bounds are not straight lines when an exponent of 1 is

used, but that the bounds curve allowing higher relative changes for the small units.

OUTLIER DETECTION 4-8

 Example using Historical Trends - Comparison of Exponents

Figure 4.5a Current vs Previous Obs Figure 4.5b Ratio vs Maximum Value

 Comparison of Exp=0 to Exp=1 Comparison of Exp=0 to Exp=1

To facilitate comparison of the results of using the two different exponent values, the heavy lines

indicating which observations require imputation have been taken from Figure 4.3a and Figure

4.4a and are shown together in Figure 4.5a. The heavy lines from Figures 4.3b and 4.4b are shown

together in Figure 4.5b. The dashed lines represent the bounds which would be applied when an

exponent of 0 is used and the dotted lines represent the bounds which would be applied when the

exponent is 1. The exclusion bounds are not shown. The two observations marked as "x" were

identified as requiring imputation when either 0 or 1 was used as the exponent. The three

observations marked as "♦" were identified as requiring imputation when an exponent of 1 was

used, but not when an exponent of 0 was used. The observation marked as "●" was identified as

requiring imputation when an exponent of 0 was used, but not when an exponent of 1 was used.

Note that using an exponent of 1 tends to identify more large units as ODIs and to omit some small

units which would be ODIs if an exponent of 0 were used. When the exponent is 1, modest

deviations in a large unit become more likely to be identified as requiring imputation and medium

deviations in a small unit become more likely to be acceptable. This is because the size of the

observation itself has an impact on the value of e when the exponent is greater than 0 while the

size has no impact when the exponent is equal to 0. This may be seen graphically as the bounds

for exponent = 1 curve out to include medium relative deviations for small units and then tighten

to allow only modest deviations in the large units. Using an exponent between 0 and 1 will result

in bounds which are curved, but less than with an exponent of 1.

OUTLIER DETECTION 4-9

Comparison of Hidiroglou-Berthelot Using Current Data and Historical Trends

Now consider the results of applying the Hidiroglou-Berthelot method with Current data to only

the tx values of the data used in the Historical Trends example. In order to treat exactly the same

group of records, records 23 and 24 must be dropped. The tx data are listed below, sorted in

ascending order by the value of tx . The same data are shown in a frequency histogram in Figure

4.6.

Ident
tx Ident

tx Ident
tx Ident

tx

02 15 07 70 20 100 17 165

18 30 08 70 04 130 13 180

05 40 11 75 03 150 21 195

09 40 15 90 22 160 14 200

01 60 12 100 06 160 19 300

10 62 16 100

61.25d 38.5d

161.25Q3100M61.5Q1:datathefromCalculated

3C 6C .05A:parametersspecifiedUser

Q3Q1

EI

50.467x283.75or 5.15x131- :if exclude

x467.50or 131 x :if impute

itit

itit

Note that in this example, the Hidiroglou-Berthelot

method with Current data would not identify a

negative value as requiring imputation unless it was

less than -131. Negative values which do not

deviate enough from the median are not

automatically flagged for imputation by this

procedure. However, if the user continues with

Banff processing and runs Error Localization with

the option to reject negative values (Section 5), then

all negative values will be identified as requiring

imputation because Error Localization will

automatically add a positivity edit for each variable.

The Hidiroglou-Berthelot method with Current data

identifies the value 300 from record 19 as a value to

be excluded and finds no values to be imputed. This is not the same result as was reached by the

Hidiroglou-Berthelot method with Historical Trends. When the Hidiroglou-Berthelot method with

Historical Trends was used, record 19 was identified as requiring imputation when the exponent

was 1 but was identified as neither a field to impute nor to exclude when the exponent was 0.

OUTLIER DETECTION 4-10

The Hidiroglou-Berthelot method with Current data identifies the value 300 in record 19 as a value

to be excluded because it is unusual compared to the other observations when only tx is

considered. The two applications of the Hidiroglou-Berthelot method with Historical Trends give

different results for the reason that was discussed above: the change of 50% compared to the

previous period is enough to warrant imputation in a unit larger than about 100 when the exponent

is 1, but this change is not enough to warrant imputation in any unit, regardless of size, when the

exponent is 0.

Sigma-Gap Method

The Sigma-Gap method can be used with Current data, Ratios or Historical Trends. Refer to the

first paragraph of the Hidiroglou-Berthelot method to learn how to determine which way is more

appropriate with your data.

Description of the Sigma-Gap Method Using Current Data

The following steps are performed for each selected variable.

 - Calculate the deviation σ𝑥. The Sigma-Gap method offers two ways of calculating a

deviation through the SIGMA parameter. The first is the standard deviation based on the

mean (STD):

𝜎𝑆𝑇𝐷 =
√∑(wixi −

∑wixi

𝑛)
2

𝑛 − 1

 where x is the original unweighted value of the variable X, and w is the associated weight

provided with the WEIGHT parameter. The weight is 1 by default if the WEIGHT

parameter is not specified.

 The other deviation available is derived from the median absolute deviation (MAD) which

looks at the distance of each record to the median:

𝜎𝑀𝐴𝐷 = 1.4826 ∗ 𝑚𝑒𝑑(|𝑤𝑖𝑥𝑖 − 𝑚𝑒𝑑𝑗(𝑤𝑗𝑥𝑗)|)

 where the internal median 𝑚𝑒𝑑𝑗(𝑤𝑗𝑥𝑗) is the median of n weighted values, and 𝑚𝑒𝑑 is the

external median of the absolute value of the gaps between the n weighted values and

𝑚𝑒𝑑𝑗(𝑤𝑗𝑥𝑗). The adjustment factor 1.4826 makes 𝜎𝑀𝐴𝐷 a consistent estimator of 𝜎𝑆𝑇𝐷

for a normal population (see Rousseeuw and Leroy, page 202). Example: the internal

median of the values (5, 10, 15, 20, 25) is 15. The distances to the median in absolute

values are, in the same order, |5-15|=10, |10-15|=5, |15-15|=0, |20-15|=5, and |25-15|=10

which, once ordered, gives, (0, 5, 5, 10, 10). The median absolute deviation is the external

median of those values, and it is equal to 5. Therefore, 𝜎𝑀𝐴𝐷 = 1.4826 ∗ 5 = 7.413 in

this example.

 The deviation 𝜎𝑆𝑇𝐷can be largely influenced by extreme values compared to 𝜎𝑀𝐴𝐷 .

This implies that potential outliers influence the deviation which serves to locate

OUTLIER DETECTION 4-11

them. It is recommended to use 𝜎𝑀𝐴𝐷 for this reason. Here is an example which

demonstrates the effect of outliers on the deviation. The values of variable X follow a

normal distribution:

 -27, -22, -21, -19, -16, -16, -15, -15, -12, -12, -8, -6, -5, -2, -2, -2, 1, 7, 8, 8, 9, 10, 14, 19,

24, 26, 29, 32, 36 and 45

The deviations are similar for these values: 𝜎𝑆𝑇𝐷 = 19.12 and 𝜎𝑀𝐴𝐷 = 19.27. By

modifying the last two values of the previous data to be extreme values,

 -27, -22, -21, -19, -16, -16, -15, -15, -12, -12, -8, -6, -5, -2, -2, -2, 1, 7, 8, 8, 9, 10, 14, 19,

24, 26, 29, 32, 136 and 145,

the deviations become: 𝜎𝑆𝑇𝐷 = 39.20 and 𝜎𝑀𝐴𝐷 = 19.27. The deviation 𝜎𝑆𝑇𝐷 has

doubled while the value of 𝜎𝑀𝐴𝐷 has remained the same. Consequently, the deviation

𝜎𝑀𝐴𝐷 tends to be less influenced by extreme values.

- Calculate the two sigma-gaps, one for detecting ODEs and one for ODIs. To do so, the

deviation previously calculated is multiplied by the value of the BETAE parameter (𝛽𝐸)

for ODE and by BETAI (𝛽𝐼) for ODI. If the OUTLIERSTAT parameter is specified, those

sigma-gaps will appear in the output file, as EXCL_SIGMAGAP and IMP_SIGMAGAP

respectively for each BY group:

𝐸𝑋𝐶𝐿_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃 = 𝛽𝐸𝜎𝑆𝑇𝐷 𝑜𝑟 𝛽𝐸𝜎𝑀𝐴𝐷

𝐼𝑀𝑃_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃 = 𝛽𝐼𝜎𝑆𝑇𝐷 𝑜𝑟 𝛽𝐼𝜎𝑀𝐴𝐷

- Determine the starting point. This feature is specific to the Sigma-Gap method. Although

all values were used so far to calculate the exclusion sigma-gap and the imputation sigma-

gap, it is possible to limit the outlier detection to only a portion of the data through the use

of the STARTCENTILE parameter. The following examples will illustrate how this

works.

Let us say that the values for the variable X are available for 10 records and are already

sorted in ascending order: 𝑥1, 𝑥2, … , 𝑥10. By default, STARTCENTILE=0 when

SIDE=LEFT or SIDE=RIGHT. Let us also say that the detection of outliers is performed

on the right only. This means that, except for the smallest value 𝑥1, all other values could

become either ODE or ODI. However, we will set STARTCENTILE to 75. This means

that outlier detection will be performed starting with the first value going to the right from

the 75th centile inclusively, 𝑥8 in this example. Thus, the starting point is 𝑥8 which means

only values for records 𝑥9 and 𝑥10 could become either ODE or ODI. Note that if many

records have the same value as the record at the centile position, Banff will choose the

record furthest to the right as the starting point (see the example on page 4-12). If

detection had been done on the left only, then outlier detection will be performed starting

with the first value met going to the left from the 75th centile inclusively. Here, 𝑥3 would

be the starting point for detection on the left with STARTCENTILE=75, and only the

values of records 𝑥2 and 𝑥1 could become either ODE or ODI. Again, if many records

OUTLIER DETECTION 4-12

have the same value as the record at the centile position, Banff will choose the record

furthest to the left as the starting point.

Using the same set of 10 records, an even number, with the parameter SIDE=BOTH, i.e.

outlier detection is performed on both the right and left sides of the data. The minimum

value for STARTCENTILE is 50, the median, when detection is performed on both sides.

Here are the starting points when all the values of 𝑥𝑖 are different:

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10

Thus, with SIDE=BOTH and STARTCENTILE=50, the first record from the median

going to the right is 𝑥6. It is the starting point for detection on the right. The first record

from the median going to the left is 𝑥5 which is the starting point for detection on the left.

The median is the record in the middle when there are an odd number of records. That

record in the middle becomes the starting point for detection on both the left and the right

sides.

It is important to note that the starting point can neither be ODE nor ODI. The default

value for STARTCENTILE when SIDE=BOTH is 75.

- Calculate the gaps between each of the ordered values to identify the records which fall

into the ODI and ODE ranges.

For outlier detection on the right, 𝑥𝑖+1 and all values greater or equal to 𝑥𝑖+1 are ODE if

𝑥𝑖+1 − 𝑥𝑖 > 𝐸𝑋𝐶𝐿_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃, where the value of 𝑖 is the position of the starting point

and i+1 is the position of the next record to the right. For outlier detection on the right,

𝑥𝑖+1 and all values greater or equal to 𝑥𝑖+1 are ODI as soon as 𝑥𝑖+1 − 𝑥𝑖 >
 𝐼𝑀𝑃_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃.

For outlier detection on the left, 𝑥𝑖−1 and all values smaller or equal to 𝑥𝑖−1 are ODE if

𝑥𝑖 − 𝑥𝑖−1 > 𝐸𝑋𝐶𝐿_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃, where the value of 𝑖 is the position of the starting point

and i-1 is the position of the next record to the left. For outlier detection on the left, 𝑥𝑖−1

and all values smaller or equal to 𝑥𝑖−1 are ODI as soon as 𝑥𝑖 − 𝑥𝑖−1 > 𝐼𝑀𝑃_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃.

Median
(STARTCENTILE=50)

𝑥6 = Starting point

For detecting ODE and

ODI to the right

𝑥5 = Starting point

For detecting ODE and

ODI to the left

OUTLIER DETECTION 4-13

If the same gap triggers both the ODE and ODI ranges, then there will be only fields to

impute (FTI). Write the results to the output field status SAS dataset as FTI and FTE

flags, respectively.

First Example of the Sigma-Gap Method Using Current Data.

The data used for the Hidiroglou-Berthelot method with Current data is used again here for

comparison purposes. The 24 values of x in ascending order are:

 -1, 4, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 11, 11, 11, 12, 13, 13, 15 and 19.

SIDE is set to BOTH to detect outliers on the left and on the right. The parameter

STARTCENTILE is set to 75. The 75th centile going from the record with the lowest value to the

right is 𝑥18 with a value of 11. Since there are three records with this value, Banff uses the last

record of this group going to the right, i.e. 𝑥19, as the starting point (𝑥𝑖 = 𝑥19) for detection on the

right. The first gap calculated between two consecutive values when checking to the right (𝑥𝑖+1 −
𝑥𝑖) is 𝑥20 − 𝑥19 which gives 12-11=1, and it will be compared to the exclusion and imputation

sigma-gaps. The second gap will be 𝑥21 − 𝑥20 and so on.

The same process is applied for detection on the left. The 75th centile going from the record with

the largest value to the left is 𝑥5 with a value of 8. Since there are four records with this value,

Banff uses the last record of this group going to the left, i.e. 𝑥5, as the starting point (𝑥𝑖 = 𝑥5) for

detection on the left. The first gap calculated between two consecutive values when checking to

the left (𝑥𝑖 − 𝑥𝑖−1) is 𝑥5 − 𝑥4 which gives 8-7=1, and it will be compared to the exclusion and

imputation gaps. The second gap will be 𝑥4 − 𝑥3 and so on.

The mean absolute deviation, which will be used to calculate the gap, is 2.22 for this example.

The multiplier for exclusion that we will use is 𝛽𝐸=1.5, and the multiplier for imputation is

𝛽𝐼=3.0.

The exclusion gap is calculated, and it will be used for detecting ODE on the left and the right

sides:

𝐸𝑋𝐶𝐿_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃 = 𝛽𝐸𝜎𝑀𝐴𝐷 = (1.5) ∗ (2.22) = 3.33

Whenever the gap between any two consecutive values is greater than 3.33, the larger value (when

going to the right) or the smaller value (when going to the left) is identified for exclusion (ODE).

The imputation gap is calculated, and it will be used for detecting ODI on both the left and the

right side:

𝐼𝑀𝑃_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃 = 𝛽𝐼𝜎𝑀𝐴𝐷 = (3.0) ∗ (2.22) = 6.66

Whenever the gap between any two consecutive values is greater than 6.66, the larger value (when

going to the right) or the smaller value (when going to the left) is identified for imputation (ODI).

In other words, any gap in the interval (3.33, 6.66] will trigger ODEs, and any gap greater than

6.66 will trigger ODIs. For example, the gap between 𝑥22=13 and 𝑥23=15 is 2, which is smaller

OUTLIER DETECTION 4-14

than 3.33, and that means 𝑥23 is neither an ODE nor ODI. However, the gap between 𝑥23=15 and

𝑥24=19 is 4, which falls in the interval (3.33, 6.66], and thus makes 𝑥24 an ODE.

In this example with the Sigma-Gap method, 𝑥1=-1 is detected as an outlier to exclude (ODE) on

the left, and 𝑥24=19 is an ODE on the right. In the previous Hidiroglou-Berthelot example using

the same data, on the left, 𝑥1=-1 was an outlier to impute (ODI), and 𝑥2=4 was an ODE; on the

right, 𝑥24=19 was an ODE.

Second Example of the Sigma-Gap Method Using Current Data.

We have the following 20 values of x in ascending order:

 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 24, 24, 25, 25, 25, 25, 27, 28 and 100

In this case, we want to detect outliers by checking the gaps between all the values going to the

right. When the parameter SIDE=RIGHT, the parameter STARTCENTILE=0 by default, which

means that the record with the smallest value in ascending order, 𝑥1=5, is the starting point

(𝑥𝑖=𝑥1), and all the other values will be checked to see if they become ODE or ODI. The sigma-

gaps will once again be based on the calculated mean absolute deviation (SIGMA=MAD), which

for this example is 2.97. As in the previous example with Current data, =1.5 and =3.0.

𝐸𝑋𝐶𝐿_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃 = 𝛽𝐸𝜎𝑀𝐴𝐷 = (1.5) ∗ (2.97) = 4.46

𝐼𝑀𝑃_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃 = 𝛽𝐼𝜎𝑀𝐴𝐷 = (3.0) ∗ (2.97) = 8.91

Whenever the gap between any two points is in the interval (4.46, 8.91], the larger point is

identified for exclusion (ODE). Whenever the gap between any two points > 8.91, the larger point

is identified for imputation (ODI).

With the above data, the first gap greater than 4.46 or 8.91 is 17, between the values of 𝑥11=7 and

𝑥12=24. Since the gap exceeds the imputation sigma-gap which has a value of 8.91, the value 24

is flagged for imputation (ODI) along with all the values greater than it. Almost half of the values

have been identified as outliers because they are too large. This is due to the fact that our data

form two distinct groups of similar data, those from 5 to 7 and those greater than 23. By setting

STARTCENTILE=80 instead of the 0 default, only the largest 20% of the data will be checked. In

this case, there is only one outlier identified for imputation, the value of 𝑥20=100.

Description of the Sigma-Gap Method Using Ratios

The following steps are performed for each selected variable.

- For each record in which 0x i and 0yi , calculate
i

i
i

y

x
r , the ratio of ix , the value

of the selected variable in the ith record, to iy , the corresponding value of the auxiliary

variable in the ith record. The next steps are the same as when using Current data. The

only difference is the variable 𝑥𝑖 which is replaced by 𝑟𝑖 in the formulas. The steps are

summarized next, and for more information, refer to the previous section about the Sigma-

Gap method using Current data.

OUTLIER DETECTION 4-15

- Calculate the deviation σ𝑟:

𝜎𝑆𝑇𝐷 =
√∑(wiri −

∑wiri
𝑛)

2

𝑛 − 1

or

𝜎𝑀𝐴𝐷 = 1.4826 ∗ 𝑚𝑒𝑑(|𝑤𝑖𝑟𝑖 − 𝑚𝑒𝑑𝑗(𝑤𝑗𝑟𝑗)|)

- Calculate the two sigma-gaps, one for detecting ODEs and one for ODIs for each BY

group:

𝐸𝑋𝐶𝐿_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃 = 𝛽𝐸𝜎𝑆𝑇𝐷 𝑜𝑟 𝛽𝐸𝜎𝑀𝐴𝐷

𝐼𝑀𝑃_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃 = 𝛽𝐼𝜎𝑆𝑇𝐷 𝑜𝑟 𝛽𝐼𝜎𝑀𝐴𝐷

 - Determine the starting point using the parameter STARTCENTILE and the 𝑟𝑖 sorted in

ascending order: ascending order: 𝑟1, 𝑟2, … , 𝑟10.

- Calculate the gaps between each of the ordered values (𝑟𝑖) to identify the ratios which fall

into the ODI and ODE ranges.

For outlier detection on the right, 𝑟𝑖+1 and all values greater or equal to 𝑟𝑖+1 are ODE if

𝑟𝑖+1 − 𝑟𝑖 > 𝐸𝑋𝐶𝐿_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃, where the smallest value of 𝑖 is the position of the

starting point for detection on the right and i+1 is the position of the next record to the

right. For outlier detection on the right, 𝑟𝑖+1 and all values greater or equal to 𝑟𝑖+1 are

ODI as soon as 𝑟𝑖+1 − 𝑟𝑖 > 𝐼𝑀𝑃_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃.

For outlier detection on the left, 𝑟𝑖−1 and all values smaller or equal to 𝑟𝑖−1 are ODE if

𝑟𝑖 − 𝑟𝑖−1 > 𝐸𝑋𝐶𝐿_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃, where the largest value of 𝑖 is the position of the starting

point for detection on the left and i-1 is the position of the next record to the left. For

outlier detection on the left, 𝑟𝑖−1 and all values smaller or equal to 𝑟𝑖−1 are ODI as soon as

𝑟𝑖 − 𝑟𝑖−1 > 𝐼𝑀𝑃_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃.

- If the same gap triggers both the ODE and ODI ranges then there will be only fields to

impute (FTI). Identify the records which have outlier or exclusion values. Write the

results to the output field status SAS dataset as FTE and FTI flags. For example, if 𝑟8 is

ODE, then 𝑥8 will get an FTE status.

OUTLIER DETECTION 4-16

Description of the Sigma-Gap Method Using Historical Trends

This is a special case of the Sigma-Gap method using Ratios in which the auxiliary variable, iy , is

the selected variable from the previous period. The steps performed when using Historical Trends

are the same as those performed when using Ratios with the current value of the selected variable

being denoted by itx and the historical value of the selected variable being denoted by 1tix ,

where the second subscript denotes the time period, so that the ratio for the ith record is
 1ti

it
i

x

x
r

The remaining steps are the same as for detecting outliers with the Sigma-Gap method using

Ratios.

Example of the Sigma-Gap Method Using Historical Trends

The same data will be used as in the earlier example illustrating the Hidiroglou-Berthelot method

using Historical Trends, 24 observations in each of two time periods which we will now use as

ratios. Once again, records 𝑥23 and 𝑥24 will be ignored because they contain a zero and negative

value respectively. As well, outliers are checked on both the left and right (SIDE=BOTH).

First, the historical trends 𝑟𝑖 are computed and sorted in ascending order. The parameter

STARTCENTILE=75. First, looking to the right, the 75th centile starting from the record with the

lowest value is ratio 𝑟17=1.179. Ratio 𝑟17 becomes the starting point (𝑟𝑖 = 𝑟17). The first gap

calculated when checking for outliers to the right (𝑟𝑖+1 − 𝑟𝑖) is between ratios 𝑟17 and 𝑟18, 1.429-

1.179=0.250, and it will be the first gap on the right to be compared to the exclusion and

imputation sigma-gaps. The second gap will be 𝑟19 − 𝑟18 and so on.

The same process is applied for detection on the left. We still look for the 75th centile but this time

starting from the largest to the smallest value of ratios. Ratio 𝑟6=0.914 is the starting point (𝑟𝑖=𝑟6)

for detection on the left. The first gap that will be calculated when checking for outliers to the left

(𝑟𝑖 − 𝑟𝑖−1) will be between ratios 𝑟6 and 𝑟5, 0.914-0.889=0.025, and it will be the first gap on the

left to be compared to the exclusion and imputation sigma-gaps. The second gap will be 𝑟5 − 𝑟4

and so on.

The calculated mean absolute deviation, which will be used to calculate the gap, is 0.18. The

multipliers for exclusion and imputation are set to 𝛽𝐸=1.5 and 𝛽𝐼=3.0 respectively.

The exclusion gap will be used for detecting ODEs on the left and the right side:

𝐸𝑋𝐶𝐿_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃 = 𝛽𝐸𝜎𝑀𝐴𝐷 = (1.5) ∗ (0.18) = 0.27

Whenever the gap between any two consecutive values is greater than 0.27, the larger value of the

two (when going to the right) or the smaller value (when going to the left) is identified for

exclusion (ODE).

The imputation gap is calculated, and it will be used for detecting ODIs on both the left and the

right side:

𝐼𝑀𝑃_𝑆𝐼𝐺𝑀𝐴𝐺𝐴𝑃 = 𝛽𝐼𝜎𝑀𝐴𝐷 = (3.0) ∗ (0.18) = 0.54

OUTLIER DETECTION 4-17

Whenever the gap between any two consecutive values is greater than 0.54, the larger value of the

two (when going to the right) or the smaller value (when going to the left) is identified for

imputation (ODI).

In other words, any gap in the interval (0.27, 0.54] will trigger ODEs, and any gap greater than

0.54 will trigger ODIs. For example, the gap between ratios 𝑟5 and 𝑟6 is 0.025 which is smaller

than 0.27, and that means the ratio of 0.889 for 𝑟5 is neither ODE nor ODI. However, the gap

between ratios 𝑟2 and 𝑟3 is 0.781- 0.429=0.352, which falls in the interval (0.27, 0.54], and thus

makes the ratio 𝑟2 an ODE. The fact that 𝑟2 falls in the ODE interval means that 𝑥2 will get a

status of FTE.

Comparing this Sigma-Gap example to the Hidiroglou-Berthelot example using the same data, on

the left, the values to be imputed (ODI) of the same two records by Hidiroglou-Berthelot are now

to be excluded (ODE) by Sigma-Gap; 𝑥1 and 𝑥2 have an FTE status. On the right, the values of

the same three records are detected using both methods; 𝑥20 and 𝑥21 still have an FTE status, and

𝑥22 still has an FTI status.

Order of Outliers on Output Data Set

The procedure’s output data set contains an observation for each field that was identified as an

outlier to exclude (FTE) or impute (FTI). Each observation contains the record number, field

name, field status, and several other variables. The user may sort these observations in any order

after the procedure has run by using the SORT procedure in SAS. By default, when using the

Sigma-Gap method on the right or the Hidiroglou-Berthelot method on any side, all of the

variables associated with each observation are automatically sorted from rightmost column to

leftmost in ascending order except the record number.

However, when looking for outliers on the left using the Sigma-Gap method, the first record listed

is the one whose field’s value triggered the first sigma-gap. In this case, the remaining outliers on

the left are then listed by the field’s descending value.

ERROR LOCALIZATION 5-1

5. PROC ERRORLOC – ERROR LOCALIZATION

Purpose

The purpose of the Error Localization procedure is to identify the fields which must be changed in

each individual record in error so that the record can be made to pass all the edits. The original

data are not changed in this procedure. The fields which require imputation are identified during

the execution of Error Localization, but no imputation actually takes place. The values which will

replace the original values in these fields are not determined until the imputation phase.

Description of the Method

Data to be edited by Banff are assumed to be numeric and continuous. In the edits, all variables

have to be bounded either below or above or both. Positivity edits for each variable may be added

through the option for rejecting negative values to the edits specified by the user to form the

system of linear inequalities which is to be applied to each data record. The edits specified by the

user may include equalities as well as inequalities. Letting the n variables supplied by a survey

respondent be 1x to nx , a system with m user-specified inequalities and/or equalities and n edits

to bound the variables may be written as:

9999-x

..

..

0x

bxaxaxa

....

....

...

bxaxaxa

n

1

mnmn2m21m1

1n1n212111

The inequalities define a region, called a feasible region, in the n-dimensional space. When values

supplied by the respondent are substituted in the inequalities, all records which satisfy the edits fall

inside the feasible region. Records which fail one or more edits are outside the region. Some

records which fail may contain missing or unknown values while others may have values which do

not satisfy the edits.

The selection of fields to impute for records which do not pass the edits must be based on some

criterion. The strategy used by Banff is to minimize the number of fields requiring imputation. In

other words, it would be impossible to make a record pass the edits by changing fewer fields than

the number of fields identified in the solution provided by Error Localization. This is an

application of the Rule of Minimum Change as proposed by Fellegi and Holt (1976) and

developed by Sande (1979). This approach is intuitively appealing because it retains as much as

possible of the data supplied by the respondent. It should be noted that minimizing the number of

fields to impute is not the same as minimizing the magnitude of the imputation. Error Localization

would always choose to impute one field, even though it would have to change by a large amount,

ERROR LOCALIZATION 5-2

rather than choose two fields which would have to change by smaller amounts.

The purpose of the Error Localization procedure is to identify the fields which must be imputed in

order to "move" a record into the feasible region. The identification of these fields is referred to as

the solution to the Error Localization problem, while the number of fields requiring imputation is

referred to as the cardinality of the solution. In reaching the solution, certain "corrections" to

each record are calculated, but these "corrections" are never actually used to adjust the data.

Indeed, the "corrections" would be unsuitable for that purpose since they move a record which

fails the edits to a location on the boundary of the feasible region. No application would want all

its edit failures imputed so that they were just at the extreme limits of acceptability.

A simplified version of the steps that Error Localization takes when a record fails one or more

edits is given below. The term "corrections" is used in the Error Localization context; it is not the

actual imputation that will eventually be made to the record.

 - Initially, it is not known which fields require imputation so that the record may

pass the edits. The approach taken is to consider independent corrections for each

field. It is these corrections which become the variables in the Error Localization

problem. It is likely that many of these corrections will eventually be found equal

to zero and that the corresponding fields will not require imputation, but that is not

known at the outset.

 - Impose the condition that the number of non-zero corrections be minimized, or,

equivalently, that as many of the corrections as possible be set to zero. This

ensures that the number of fields requiring imputation is a minimum.

 - When the corrections are applied to the fields, the resulting record must, by

definition, pass the edits. Therefore, the corrected values are substituted into the

edits and the linear system is solved to obtain values for the unknown corrections.

- A field does not require imputation if its corresponding correction was found to be

equal to zero. Fields with non-zero corrections will be imputed in later procedures

so that the record will fall inside the feasible region. Therefore, fields with non-

zero corrections are identified as fields requiring imputation. These fields are

given a FTI (Field To Impute) flag on the output field status SAS dataset.

Multiple Solutions

For any given record, there may be several solutions to the Error Localization problem which

involve the identification of the same number of fields for imputation. For example, if a record

fails the edit 4321 xxxx , then it does not matter which one of 321 x,x,x or 4x is chosen

for imputation, assuming that none of these values has failed other edits. Error Localization

identifies all the possible solutions which involve the minimum number of fields and then selects

one solution at random. This means that slightly different results may be obtained when Error

Localization is run twice on the same set of data because different solutions may be chosen for

records which have multiple solutions. It should be noted that only the selected solution is

retained; all other multiple solutions are discarded by Error Localization.

ERROR LOCALIZATION 5-3

Example of Error Localization

Consider the following set of edits which

defines the feasible region shown in Figure 5.1.

)3(5y

(2)4x

(1)6yx

Record A has the values (3,4) for x and y. It is

inside the region and passes all the edits.

Records B (2,3), C (4,1) and D (5,6) all fail one

or more edits, but can be made to pass the edits

by changing one or both of the reported values.

For each individual record, Error Localization

determines the minimum number of fields

which must be changed and identifies that group

as the Error Localization solution for that record.

Figure 5.2 represents the possible solutions to

the Error Localization problem for records B, C

and D. Record B can be brought into the feasible

region by changing either x, represented by the

horizontal dotted line starting at B, or by

changing y, represented by the vertical dotted

line starting at B. This is an example of multiple

solutions, each with a cardinality of one. Banff

would randomly choose one of the two to use as

the solution and would drop the other.

Record C can be brought into the feasible region

by changing y, represented by the vertical dotted

line from point C. Record C could also be made

acceptable by changing both x and y, but

changing y involves changing fewer fields and

would therefore be the solution identified by

Error Localization. The solution to this record is

shown in detail below.

Record D also fails the edits and would need imputation of both x and y to enter the feasible

region. This is represented in Figure 5.2 by a change in y, the vertical dotted line, followed by a

change in x, the horizontal dotted line. It should be noted that x and y are identified as the group

of fields requiring imputation in record D; the required change could also have been represented

by a horizontal line followed by a vertical line.

Figure 5.1 Example of Feasible Region

Figure 5.2 Solutions for records B, C

and D

ERROR LOCALIZATION 5-4

As a more detailed illustration of the approach taken to reach an error localization solution,

consider Record C (4,1) which lies outside the feasible region. In Banff, the corrections actually

calculated would consist of the difference of two non-negative values, at least one of which would

be required to be equal to zero. However, for simplicity, single corrections are applied to each

field in this example.

Initially, it is not known which field or fields require imputation. Unknown corrections of a and b

are considered for x and y respectively. This would "move" the original record C (4,1) to some

unknown point C' (4+a,1+b) inside the feasible region. The values of the point C' must satisfy the

edits because we require that C' be inside the feasible region, so, substituting into the inequalities

from the original set of edits we obtain the following.

)3(5b1

(2)4a4

(1)6b1a4

Or, more simply,

)3(4b

(2)0a

(1) 1ba

Banff requires that the number of fields requiring imputation be minimized. There is an infinite

number of possible solutions with a=0 and with b between 1 and 4. These solutions are equivalent

to accepting the value of x and selecting y for imputation. There are no solutions with b=0. An

infinite number of possible solutions also exist with both a and b not equal to zero, but that implies

that two fields would be selected for imputation while selecting only one would suffice.

Therefore, Error Localization would accept the x value and identify the value in y as requiring

imputation.

Chernikova’s Algorithm

The Error Localization problem is expressed as cardinality constrained linear program (Sande,

1979) and solved using Chernikova's algorithm (Chernikova, 1964 and 1965), (Rubin, 1973). A

matrix is constructed from the user-specified edits, any positivity edits and the original values of

the record. Several iterations are usually necessary to reach the final solution. In each iteration,

columns of the matrix are either retained or taken in linear combination with one or more other

columns. In this way, the matrix often increases greatly in size, even though some columns are

eliminated because they can never lead to a solution. The execution time necessary to reach a

solution also increases as more columns are produced and as accompanying tests are performed

more often.

The actual implementation is somewhat more complex than what has been indicated here. For a

detailed description of the application of Chernikova's algorithm to Banff, see Schiopu-Kratina

and Kovar (1989).

ERROR LOCALIZATION 5-5

Negative Values in Error Localization

Designing edits for processing negative values can present unexpected challenges and requires

special considerations that may produce unexpected results when not taken into account. For more

information and examples please see the document “Specifying Edits for Processing Negative

Values with Banff” (Banff Support Team, 2006).

Weights in Error Localization

In some cases, the user may wish to exert some influence on the fields that are selected for

imputation. This may be accomplished by extending the rule of minimum change to include the

use of weights for each variable. Error Localization then minimizes the sum of the weights of

fields that are identified for imputation. For example, if a variable has a weight of two, Banff

views changing that field as exactly the same as changing two fields which each have a weight of

unity. In this situation, the cardinality of the solution is the sum of the weights of the fields

identified as requiring imputation. Variables may be given non-integral weights. If one variable

has a weight of 1.1 while all others have weights of unity, then a solution involving a field with the

1.1 weight has a lower cardinality than a solution involving two fields, but a higher cardinality

than solutions involving any other single field. These weights apply to all records in the data

group and edit group which are being processed; individual records cannot have different weight

patterns. In other words, if the user wants error localization performed on the first data record with

a certain set of weights, then error localization is done on the entire group of records using this set

of weights.

Care must be taken in assigning weights since variables are usually involved in several edits with

different combinations of other variables. Giving a certain variable an unusual weight in one edit

may have an impact on the weights needed by the other variables involved in other edits. The use

of weights may also affect the execution time necessary for Error Localization to reach its

solutions. If the work matrix does not attain its maximum allowed size, the execution time may be

reduced. However, if the work matrix grows so large that some elimination of columns must take

place then the execution time may increase. When all variables have equal weights, removing all

columns with the highest total weight, or cardinality, often results in the elimination of many

columns. However, when the weights are unequal, removing all columns with the highest

cardinality often results in the elimination of only a few columns. In addition, when columns with

the maximum cardinality have been removed, a new maximum cardinality is calculated by

subtracting .5 from the current maximum. When variables have different weights, it may take

several passes to reduce the new maximum cardinality to a level that is effective in controlling the

production of new columns so that the total matrix size does not exceed the storage limit. Several

situations in which weights are used are described below.

Some variables within an edit group may be reported more reliably than others. For example,

respondents may tend to give good values for Gross Business Income but may give poor values for

Total Salaries because they are not sure if bonuses should be included when reporting Total

Salaries. In this situation, Banff users often assign a higher weight to the more reliable variable so

that in a choice between the two fields, the more reliable one is retained and the less reliable one is

chosen for imputation. It should be emphasized again that the set of weights specified by the user

applies to all records in the data group and edit group being processed.

ERROR LOCALIZATION 5-6

For example, consider a variable which often has a reported value of zero and which is part of the

following equality edit:

 wheat + oats + barley + rye + caraway = total grain produced.

Very few farms produce caraway seeds, so if this edit fails it is likely that one of the other fields

has been reported incorrectly and should be changed rather than changing caraway from zero to

some other value. However, if the variables have equal weights, caraway is just as likely to be

chosen for imputation as any of the other four variables. The solution is to give caraway a slightly

higher weight than is given to the other components. This is a special case of one variable being

reported more reliably than others. The user believes that the typical respondent knows the

amount of caraway seeds produced better than the amounts of other types of grain because the

caraway produced is almost always zero. It may be noted that caraway would never be chosen for

imputation if the reported value is a zero and the reported total is less than the sum of the parts.

This is because at least one of the parts would have to be reduced and the zero value could not be

decreased and still pass the edits.

Weights may be used to ensure that certain fields can never be selected for imputation. This may

be useful when a variable belongs to two or more edit groups. The user must avoid the situation in

which a record passes the edits of one edit group (either originally or after imputation) and is then

imputed in a second edit group in such a way that it no longer satisfies the edits of the first edit

group. This problem may be avoided by assigning to any variable which is part of a previously

imputed edit group, a weight higher than the sum of weights of all the other variables. Obviously,

the order of processing of edit groups is very important in this situation and must be given careful

consideration.

Weights are often used in conjunction with equality edits to make some variables less likely to be

selected for imputation when that particular edit fails. Consider the case in which the sum of four

variables must be equal to a fifth variable. Say the user wishes to retain the sum if one or two of

the parts could be changed to satisfy the equality. However the user would rather change the sum

than have to impute three or four of the parts. This may be accomplished by assigning weights of

unity to each of the four parts and a weight greater than two and less than three to the sum. On the

other hand, if the user prefers always to retain the parts and to readjust the sum, then the sum must

be assigned a weight less than each of the other four variables.

Limit on Number of Fields in the Solution

Another feature of Error Localization is an optional user-specified limit on the maximum number

of fields which are identified as requiring imputation in any solution. The same limit applies to all

records in the data group and edit group being processed. The purpose of this limit is to restrict

the number of fields (or the sum of weights of fields if weights are used) to be imputed in the final

solution. Obviously this is effective only if the limit is less than the number of (weighted) fields.

ERROR LOCALIZATION 5-7

No Solution Found – Manual Imputation Required

If the user has imposed no limit on the (weighted) number of fields to be identified as requiring

imputation, then a solution is always possible. In the worst case, this solution identifies all fields

for imputation, as it would for record D in the earlier example. However, if a limit is specified,

there may be records which have no solution involving a (weighted) number of fields that is less

than or equal to that limit. Since the only solution for Record D involved two fields, no solution

could have been found if the limit on the number of fields to be imputed had been set to one. If no

solution can be found because of this limit, Banff simply rejects the entire record and notifies the

user of this. The advantage of limiting the solution is that the work matrix used in the calculations

does not grow to the size which would have been necessary to find a solution involving many

fields. This means that execution time is reduced, but possibly at the cost of having more records

which need some kind of manual imputation because no acceptable solution could be found.

No Solution Found – Time Limit Exceeded

The user may limit the execution time to be spent finding the solution for any single record. If the

solution of minimum cardinality has not been found in the specified time, the record is rejected

and the user notified of this. In normal processing runs, a value should always be entered in this

field to avoid the possibility of a very small number of records consuming a great deal of

execution time. It is difficult to recommend a precise default value since the time taken to process

records varies greatly from group of edits to group of edits and from record to record.

Nevertheless, a time limit between 0.5 and 30 seconds could be entered for mainframe jobs and

refined after the user has studied the number of TLE records which are produced.

Time Limit Exceeded records may be resubmitted with an increased time limit. It is up to the user

to ensure that the time limit has actually been increased; Banff does not retain the previously

specified limit(s) to verify this. If the limit is not greater than the run which produced the Time

Limit Exceeded records, then no new records will be solved. The user may also deal with Time

Limit Exceeded records outside Banff.

Other Sources of Fields to Impute

It is possible that certain fields of individual records have already been identified as fields

requiring imputation before the record enters Error Localization. The user may have done this

manually, or this can occur if the Outlier Detection procedure has been used to flag fields as fields

to impute. See Section 4 of this guide for more details on Outlier Detection. To ensure that these

fields are identified as fields to impute by Error Localization, the user should set the values of

these fields to missing before the data enters Error Localization.

DETERMINISTIC IMPUTATION 6-1

6. PROC DETERMINISTIC – DETERMINISTIC IMPUTATION

Purpose

The Deterministic Imputation procedure analyzes each field previously identified as requiring

imputation to determine if there is only one possible value which would satisfy the original edits.

If such a value is found, it is imputed during execution of this procedure.

Description of the Method

Deterministic Imputation performs the following steps for each record which has one or more

fields requiring imputation.

- Eliminate the edits which are satisfied by the valid fields on the record.

Therefore, all remaining edits involve fields which require imputation and,

possibly, the acceptable fields.

- The original values of the fields which are to be retained are substituted

into these remaining edits to obtain a reduced set of edits. This reduced

set contains edits which involve only the fields to be imputed.

- The maximum and minimum values are found for each field, subject to

the reduced set of edits and, if the option to reject negative values is in

effect, to the positivity edits.

- If the maximum and minimum are the same, then only one value is

possible and it is imputed.

One would not expect Deterministic Imputation to find an acceptable imputation for the majority

of fields which have been previously identified as requiring imputation. Nevertheless, it is useful

to run Deterministic Imputation because the solutions that are found in this procedure may never

be found by the other imputation methods. In addition, running Deterministic Imputation serves to

reduce the number of fields which will require imputation by subsequent methods. Generally,

Deterministic Imputation would be expected to find more solutions if there are equality edits.

However, deterministic solutions may exist, even without equality edits, as illustrated by the

following example.

Example of Deterministic Imputation

Consider the following set of edits when the option to reject negative values is in effect and the

values in the record after Error Localization.

 Original Edits Positivity Edits Record

required)n (imputatio ? x)8(0x(4)1500x

1000 x)7(0 x(3)xx.6

400 x)6(0 x(2)x.9 x x.54

required)n (imputatio? x)5(0 x(1)xxx

443

3313

22143

11321

DETERMINISTIC IMPUTATION 6-2

Edits (1), (2), (3), (5) and (8) involve the fields which require imputation, so these edits cannot be

satisfied at this point. However, edits (4), (6), and (7) involve only fields which are to be retained

and these edits are satisfied by the acceptable values in the record. Therefore, the first step in

finding the reduced set of edits is to eliminate edits (4), (6), and (7). Next, the values of the fields

which are to be retained are substituted into the remaining five edits to obtain the reduced set of

edits.

Reduced Set of Edits

)3(x600

(8) 0 x)2(x9.x 540

(5) 0 x (1) 600x

1

414

11

The maximum value that 1x can have while still satisfying the edits is 600 and the minimum value

that it can have while still satisfying the edits is also 600. Therefore, the value 600 is imputed for

1x . Substituting 600 for x1, satisfies edits (1), (3), and (5), so these edits are eliminated. Next, the

values of the fields which are to be retained are substituted into the remaining two edits to obtain

the reduced set of edits.

Reduced Set of Edits

(8) 0 x)2(0 x 44

Clearly, the only value satisfying both edits is 0, so the value 0 is imputed for x4.

Consider the same set of original edits when the option to accept negative values is in effect and

the values in the record after Error Localization.

 Original Edits Record

required)n (imputatio ? x(4)1500x

1000 x (3)xx.6

400 x (2)x.9 x x.54

required)n (imputatio? x (1)xxx

43

313

2143

1321

Again, the first step in finding the reduced set of edits is to eliminate edit (4). Next, the values of

the fields which are to be retained are substituted into the remaining three edits to obtain the

reduced set of edits

 Reduced Set of Edits

)3(x600

)2(x9.x 540

 (1) 600x

1

14

1

DETERMINISTIC IMPUTATION 6-3

The only value of x1 that satisfies these edits is 600, so the value 600 is imputed to x1. Substituting

this value into the remaining edits, produces the reduced set of edits

Reduced Set of Edits

)2(0 x 4

Deterministic Imputation can find no solution for 4x in this case because x4 is unbounded.

Another method of imputation must be used.

Negative Values in Deterministic Imputation

Designing edits for processing negative values can present unexpected challenges and requires

special considerations that may produce unexpected results when not taken into account. For more

information and examples please see the document “Specifying Edits for Processing Negative

Values with Banff” (Banff Support Team, 2006).

DONOR IMPUTATION 7-1

7. PROC DONORIMPUTATION – DONOR IMPUTATION

Purpose

The Donor Imputation procedure uses a nearest neighbour approach to find, for each record

requiring imputation, the valid record that is most similar to it and that will allow the imputed

recipient record to pass the user-specified post imputation edits. The imputation is performed if

such a record is found. Donor Imputation is the preferred method of imputation for many

applications because all fields requiring imputation are taken from the same donor record and

relationships between the imputed variables are therefore retained.

Definitions

Recipient refers to a record which has at least one field requiring imputation in the edit group

being processed. These records are identified by the Error Localization procedure, or by the user

using some other method outside of Banff. Outlier Detection may have been run prior to Error

Localization and may also have identified fields requiring imputation.

Donor refers to a record which has passed all the edits and which has no fields requiring

imputation in the edit group being processed or in the user-specified matching fields outside the

edit group. All fields of donor records should ideally be original respondent data or data imputed

by Deterministic Imputation, although the user may specify that previously-imputed data also be

eligible. The values which are imputed by Donor Imputation are taken directly from donor records.

Potential donor records may have some fields which have been identified as Field To Exclude

(FTE) fields and therefore cannot be donated.

Mixed refers to a record which has some characteristics of both donors and recipients. Such a

record has no fields to impute inside the edit group being processed so it is not a recipient, but is

not a donor either because it requires imputation in one or more of the user-specified match fields

outside the edit group.

Field to Exclude (FTE) codes may refer to fields on any type of record. The user may define any

field as FTE. As well, the Outlier Detection procedure has determined that such fields have values

which are not extreme enough to require imputation, but are sufficiently unusual that they should

not be donated to other records. These values are accepted in the original record because they

have been supplied by the respondent. Such fields may be used as matching fields when they

occur in a donor record. FTE fields have no effect in a recipient record.

Matching Fields are calculated individually for each recipient record. The values of the matching

fields of a recipient do not have to match exactly to the values of the matching fields in the nearest

neighbour donor record. The values in these matching fields are used to determine the distance

between recipients and donor records. Since the search for a nearest neighbour is based on these

fields, matching fields should be related to the fields which require imputation. It is possible for a

record to have no matching fields.

User-specified Matching Field or Must Match Field is a field which is specified by the user to

be a matching field for every recipient, regardless of whether or not it would have been chosen as

such by the system. A user-specified matching field is used as a matching field for every

recipient, except for cases in which the user-specified matching field of the recipient itself requires

DONOR IMPUTATION 7-2

imputation. As with other matching fields, it does not have to match exactly to the corresponding

field of the nearest neighbour donor record.

Post Imputation Edits form a user-specified system of linear inequalities which must be satisfied

by records imputed in this procedure. No restrictions are placed on the relationship between the

post imputation and original edits except that they must refer to the same fields. A common

situation is to make the post imputation edits a more "relaxed" version of the original edits so that

the feasible region of the post imputation edits completely contains the feasible region of the

original edits. Equalities from the original set of edits are often replaced by two inequalities which

allow some deviation from the strict equality. This will increase the chance of a successful

imputation. On the other hand, the post imputation edit set could be made more restrictive than

the original set by adding edits in order to ensure that certain relationships, such as an exact match

on a classification variable, exist in the imputed data.

Example of Classification of Records

In the following example, the edit group consists of the variables 1x to 4x with 5x as a user-

specified matching field from outside the edit group.

 Inside Edit Group Outside Edit Group

 Ident 1x 2x 3x 4x 5x

donor

donor

1

2

ok

ok

ok

ok

ok

ok

ok

ok

ok

imputed

recipient

recipient

recipient

recipient

3

4

5

6

FTI

FTI

FTI

FTI

match-system

match-system

match-system

FTI

match-user

match-user

FTI

match-user

ok

ok

ok

ok

match-user

FTI

match-user

match-user

mixed 7 ok ok ok ok FTI

Records 1 and 2 are donors. Record 1 has valid original values in all fields under consideration.

These values are labelled as "ok" in the above table. Record 2 has a value in 5x which has been

imputed in an earlier run of one of the imputation procedures. Record 2 is classified as a donor

and the imputed value is used in distance calculations, although it would not be donated because it

is outside the edit group.

Records 3, 4, 5 and 6 are recipients because each has one or more fields to be imputed (FTI) inside

the edit group. The calculation of the nearest neighbour will be based on a group of matching

fields which may be different for each recipient. The user has chosen two matching fields 3x-

inside the edit group and 5x outside the edit group. These fields are labelled above as "match-

user" when they contain acceptable values. The variable 3x is used as matching field except in

record 5 where it is not possible because 3x requires imputation; 5x is used as a matching field

except in record 4 where it is not possible because 5x requires imputation.

DONOR IMPUTATION 7-3

In addition to user-specified matching fields, Banff chooses matching fields based on an algorithm

described in Section 7.2. For this example, the matching fields selected by the system are labelled

as "match-system". The system chooses 2x as a matching field for records 3, 4 and 5 but cannot

choose it for record 6 where 2x requires imputation. It is possible that a field would be a user-

specified match field as well as be chosen as a matching field by the system. This has no effect on

this example because it would not change the classification of records as donor, recipient or mixed.

However, special codes are written to the output field status SAS dataset to indicate if a match

field was chosen by the user, by the system or by both.

Record 7 is a mixed record. It is not a donor because its value in 5x requires imputation and it is

not a recipient because no imputation is required inside the edit group.

In Banff, there are four internal processes involved in the execution of Donor Imputation:

 - 7.1 Prepare for Donor Imputation

 - 7.2 Find Matching Fields

 - 7.3 Transform Matching Fields

 - 7.4 Perform Donor Imputation

A description of each of these processes follows in sections 7.1-7.4.

Negative Values in Donor Imputation

Designing edits for processing negative values can present unexpected challenges and requires

special considerations that may produce unexpected results when not taken into account. For more

information and examples please see the document “Specifying Edits for Processing Negative

Values with Banff” (Banff Support Team, 2006).

Mass Imputation

Some surveys select samples of units from which a set of core information is collected. More

detailed information may be collected from a sub-sample of these units. A procedure known as

“mass imputation” is then used to impute by donor those items to units not in the sub-sample, in

order to create a complete rectangular file. Mass imputation can be considered as a special case of

donor imputation, where donors are selected based solely on user-specified matching variables. A

separate procedure was developed to carry out mass imputation and is described in Section 10.

PREPARE FOR DONOR IMPUTATION 7-4

7.1 PREPARE FOR DONOR IMPUTATION

Purpose

The user must specify several parameters in order for the results of Donor Imputation to satisfy

their requirements. The user may exclude certain records from the donor population and impose

criteria which must be satisfied for donor imputation to proceed.

Previously Imputed Data in Donor Records

The user has the option to specify whether or not records are eligible donors if they have

previously imputed values in at least one field in the edit group. Note that values imputed by

Deterministic Imputation are treated as original respondent data, however. In any case, Proc

Donorimputation always uses the closest available donor in the chosen set which allows the

resulting record to pass the edits.

Keeping records with both original and previously-imputed data as donors makes the donor pool

as large as possible and may therefore result in finding a suitable donor for a greater percentage of

recipients. Because more records are included as donors, this choice may better represent the

distribution of records in the actual sample. One disadvantage is that fields which were donated

previously may have a greater chance of being used because they are repeated - once in the

original records and again in the previously-imputed record(s).

Choosing not to keep donor records with previously-imputed values limits the potential donors to

those which were originally clean and thus ensures that only original data can be used for

imputation. Some users view this as an important advantage; others prefer to include as many

donors as possible in the donor population. One of the disadvantages of reducing the number of

donors is that imputation may be unsuccessful because no suitable donor is available. When

imputation is successful the closest original donor is used, although there may have been clean

records which were closer to the recipient but were not original donors.

Other Exclusions from the Donor Population

Banff identifies eligible records which have no fields requiring imputation in the edit group being

processed or in the user-specified matching fields outside the edit group as donors. However, the

user may exclude any record from being part of the donor population by identifying them in the

input dataset.

Exclusion of other records will limit the records which are identified as donors. The user must

balance the advantages of excluding certain types of inappropriate records from the donor

population with the risk of reducing that population so much that donors cannot be found for many

of the recipients.

Limiting the Use of a Donor

Besides being able to exclude certain records from the donor population, the user may also limit

the number of times a donor is used by supplying at least one of two parameters: NLIMIT (number

limit) and MRL (multiplier for ratio limit) which are used in the calculation of DONORLIMIT for

each data group j as follows:

PREPARE FOR DONOR IMPUTATION 7-5

The symbol ⌈ ⌉ means rounded up to the nearest integer. The maximum between NLIMIT and the

other statistics using MRL is used for each data group j as the DONORLIMITj. If only one

parameter is provided, NLIMIT or MRL, then the other is excluded from the DONORLIMIT

calculation. If neither parameter is specified, then there is no limit to the number of times a donor

can be used.

Neither the minimum number of donors required (parameter MINDONORS) nor the minimum

percentage of donors required (parameter PCENTDONORS) is impacted by DONORLIMIT since

they are both calculated at the beginning of the donor imputation procedure.

A donor which has reached DONORLIMIT will be retired from the donor pool. It will be ignored

and not counted in the maximum number of donors to try (parameter N).

Imputation will stop for a given data group j when all donors have reached DONORLIMITj. In

such a case, there will not be any more attempts to find a donor for the remaining recipients. By

using an MRL ≥ 1, at least one donor will be available for attempting to impute each recipient.

Criteria for Donor Imputation

The user may specify a percentage and number of donor records which must be available for

imputation to proceed. If there is a possibility that the donor population will be drastically reduced

by the specified exclusion expression, then these criteria may be used to ensure that at least a

minimum percentage and number of donors are available. If the criteria are not satisfied, a

message will be printed and donor imputation will not be performed.

𝐷𝑂𝑁𝑂𝑅𝐿𝐼𝑀𝐼𝑇𝑗 = max 𝑁𝐿𝐼𝑀𝐼𝑇, 𝑀𝑅𝐿 ∗
𝑟𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡𝑠𝑗

𝑑𝑜𝑛𝑜𝑟𝑠𝑗

FIND MATCHING FIELDS 7-6

7.2 FIND MATCHING FIELDS

Purpose

The Find Matching Fields function of the Donor Imputation procedure analyzes each recipient

record individually to determine a set of fields to be used in the calculation of the distance from

that recipient to the donor records. It is possible for a recipient to have no matching fields. When

matching fields exist, they must be some, or all, of the valid, acceptable values of the recipient.

Many different combinations of matching fields are usually found for any given edit group and

data group. The selection of matching fields depends on each recipient's pattern of fields to

impute, the values in its fields which are retained and, of course, the original edits. If user-

specified matching fields have been declared, they are included in the recipient's set of matching

fields.

User-specified Matching Fields or Must Match Fields

User-specified matching fields may be either inside or outside the edit group. A variable which

has been declared a user-specified matching field is used in the distance calculation along with the

other matching fields. These fields are sometimes called must match fields, although they do not

have to match exactly.

User-specified matching fields from outside the edit group are especially useful when there is a

variable which is thought to be correlated with the variables in the edit group but does not appear

explicitly in the edits. For example, suppose that gross business income (GBI) does not enter the

edits specified for the edit group containing employment and salary data. Even though a direct

relationship has not been specified, the user may feel that the value of a recipient's GBI should

have an impact on the record which will eventually be chosen as its donor. The user would

therefore select GBI as a user-specified matching field from outside the edit group.

The user should ensure that all data for variables which might be used for matching fields have

already been edited, either by the Error Localization procedure of Banff or by some other process.

If not, the calculation of the nearest neighbour records could be based on values which will

eventually be changed. This is especially true for user-specified matching fields which come from

outside the edit group. It is the user's responsibility to consider the order of processing so that this

does not become a problem. If imputation has been performed as well as error localization, donor

values in the user-specified matching fields outside the edit group may be original "good" values

or values which have already been imputed. In either case, the existing donor value is used to

calculate distances but would never be donated because only fields inside the edit group are

imputed.

The user may also select fields inside the edit group as user-specified matching fields. It should be

emphasized that such fields are included as matching fields for every recipient being processed in

that run, even if the system would not have chosen those variables as matching fields. The only

situation in which a user-specified matching field is not used occurs when that field requires

imputation in the recipient record so there is no valid value to be used in the distance calculation.

FIND MATCHING FIELDS 7-7

Description of the Method

The procedure performs these steps individually for each recipient record.

 - Substitute the known, acceptable values of the recipient record into the original

edits. Exclude any edits which are reduced to relations between constants, i.e.,

which no longer contain any variables.

 - The remaining edits form a reduced set with the fields requiring imputation as the

only unknowns. This set of edits defines a feasible region which contains all

allowable values of the fields requiring imputation. Select the edits which limit

these fields by determining the boundary of this feasible region. All other edits

are redundant for the reduced set of edits and are dropped.

- Return to the original form of the edits which were identified in the previous step

as part of the boundary of the feasible region of the reduced set of edits. The

variables in these edits which are not fields requiring imputation are chosen as the

matching fields.

Example of the Determination of Matching Fields

Original Edits

(8)0v(4)2vy

(7)0u(3)uy

(6)0y(2)5x

(5)0x(1)y x

Records 1 and 2 have valid values for u and v but require the imputation of x and y.

 Record 1 Record 2

3v 2v

1u 1u

(impute) ?y (impute) ?y

(impute) ? x (impute) ? x

Substitute the acceptable values of both records to obtain the following relations.

 Record 1 Record 2

(8) 03(4) 6y(8) 02(4) 4y

(7) 01(3) 1y(7) 01(3) 1y

(6) 0y(2) 5x(6) 0y(2) 5x

(5) 0x(1)y x(5) 0x(1)y x

For both records, inequalities (7) and (8) are simply relations between constants and are therefore

excluded. For record 1, edits (1) to (6) form the reduced set of edits with edits (1) to (4) defining

FIND MATCHING FIELDS 7-8

the boundary of the feasible region as shown in the first part of Figure 7.1. Referring to the

original edits, it may be seen that edits (1) to (4) involve x and y which are to be imputed and u

and v which were found by Error Localization to be acceptable values. The Matching Fields

procedure then chooses u and v as the matching fields for record 1.

 Record 1 Record 2

Figure 7.1 Feasible regions for the reduced set of edits - Record 1 and Record 2

For record 2, edits (1) to (6) also form the reduced set of edits. In this case the boundary of the

feasible region is defined by edits (1) to (3) as is shown in the second part of Figure 7.1. The

original edits (1) to (3) involve x and y as fields to impute and u which is an acceptable value and

is chosen as the matching field for record 2.

Record 1 and record 2 are subject to the same edits, have the same fields to impute and have very

similar values in their acceptable fields. Yet, their matching fields are different. This is because

the value of v limits the value of y in record 1 but has no effect on the values of x or y in record 2.

Example of No Matching Fields

Now consider the following set of edits and the values in record 3.

 Original Edits Record 3

(5) 01vu

4v(4) 4y

3u(3) 1y

(impute) ?y(2) 5x

(impute) ?x(1) 2x

Substitute the acceptable values of record 3 to obtain the following relations.

FIND MATCHING FIELDS 7-9

(5) 107

(4)4y

(3)1y

(2)5x

(1) 2x

Edit (5) is excluded because it is simply a relation

between constants. The remaining edits, that is edits

(1), (2), (3), and (4), form the reduced set of edits. The

feasible region described by the reduced set of edits is

shown in Figure 7.2. The boundary of this feasible

region is defined by edits (1), (2), (3) and (4).

Then next step is to examine the corresponding edits

(1), (2), (3) and (4) in the set of original edits. It may

be seen that edits (1) to (4) involve only x and y, which

are both fields to impute. There are no acceptable

fields involved in these edits, so there are no matching

fields identified for this record. This is equivalent to

saying that u and v, the acceptable fields for record 3,

do not provide any information concerning the values

which should be imputed for x and y.

 Figure 7.2 Feasible region for the

reduced set of edits - Record 3

TRANSFORM MATCHING FIELDS 7-10

7.3 TRANSFORM MATCHING FIELDS

Purpose

The Transform function of the Donor Imputation procedure performs a rank value transformation

on all valid values within an edit group for each variable which has been selected at least once as a

matching field. This is done to remove the effect of scale from the data which are used in the

calculation of the distance between two records. If no transformation were done, original data

with wide ranges, such as dollar values, would always dominate the distance calculation.

Description of the Method

The Transform procedure performs the following steps independently for each variable which has

been selected at least once as a matching field.

- Sort all the valid values of the field in ascending order. This includes donor records,

recipient records for which the variable is a matching field, recipient records for which

the variable is acceptable but is not a matching field and mixed records for which the

variable is valid. Values which require imputation are ignored since they are not

valid.

- Assign each value a rank. A group of tied values receives one rank for each

occurrence of the shared value. Each record with this tied value is then assigned the

average of these ranks.

- Divide each rank by the total number of valid values plus one. This divisor is likely to

be different for each variable, since each variable may have a different number of

records with valid fields.

Example of Transformed Values

Original Value

(Sorted)

Rank Transformed

Values

-12 1 .1

26 2 .2

38 4 .4

38 4 .4

38 4 .4

47 6.5 .65

47 6.5 .65

53 8 .8

105 9 .9

The rank value transformation results in observations which, except for ties, are uniformly

distributed across the range (0,1). Extreme values are pulled in close to the other observations and

do not have an impact on the resulting transformed values. Note that in the above example, there

would be no change in the transformed values if the largest original value were reduced to 54 or

increased to 1000.

TRANSFORM MATCHING FIELDS 7-11

Distance Calculation

With numeric, continuous data, one would not expect to find an exact match between a recipient

and a donor. Since Donor Imputation is based on transferring data from a record which is as

similar as possible to the recipient, some method of deciding which record is closest, or most

similar, must be established.

Banff uses the
L norm to define this distance between two records. The distance between a record

with transformed values of matching fields of n21 ,...xx,x and a record with transformed

values of matching fields of n21 ,...yy,y is defined as

 |yx||,...,yx||,yx|max nn2211 .

This is sometimes referred to as the minimax distance because the closest donor is the one with the

smallest maximum absolute difference between the transformed values of its matching fields and

those of the recipient. Note that all matching fields have the same weight.

Example of Distance Calculation

Consider the following records representing a recipient and three donors. The transformed values

of the recipient's three matching fields, x 1, x 2 and x 3 are given below, along with the distances

from the recipient to each donor.

1x 2x 3x Distance to Recipient

recipient .5 .5 .5

donor 1 .6 .6 .6 max (|.5-.6|,|.5-.6|,|.5-.6|) = max (.1,.1,.1) = .1

donor 2 .5 .5 .4 max (|.5-.5|,|.5-.5|,|.5-.4|) = max (0, 0,.1) = .1

donor 3 .8 .5 .5 max (|.5-.8|,|.5-.5|,|.5-.5|) = max (.3, 0, 0) = .3

Note that donor 1 and donor 2 are the same distance from the recipient, even though all three fields

of donor 1 are .1 from the corresponding fields of the recipient while two of the fields of donor 2

are exactly the same as those of the recipient and one field is .1 away. Donor 3 and donor 1 have

the same total absolute difference, but donor 1 has this difference spread out among the three

matching fields while donor 3 has all this difference concentrated in one matching field. This

definition of distance considers a donor with moderate differences from the recipient in all

matching fields to be closer than a donor which has a large difference in one matching field and

little or no difference in the others.

PERFORM DONOR IMPUTATION

7-12

7.4 PERFORM DONOR IMPUTATION

Purpose

The purpose of this function of the Donor Imputation procedure is to find, for each recipient

record, the closest donor record whose values will allow the recipient record to pass the user-

specified post imputation edits. As described in Friedman, Bentley and Finkel (1977), a tree

structure is created in order to make the search for donors more efficient. Donors are found for

records both with and without matching fields.

Description of the Method

Only one tree is constructed for each data group. The following steps are performed once for the

entire set of k matching fields identified earlier by the Find Matching Fields procedure for the

data group being processed.

- Create a tree structure to organize the records which have been identified as donors.

The number of levels in the tree is controlled by the bucket size. See below for

a more detailed description of how the tree is constructed.

- For each recipient with matching fields, traverse the tree and select a group of closest

donors. The size of the group is the n parameter specified by the user.

- Beginning with the closest, test donors in the group until one is found which does not

have FTE flags on fields to be imputed and which would result in an imputed record

which passes the post imputation edits. If such a record is found, the imputation is

performed and the procedure goes to the next recipient record.

- If none of the n potential donors can be used, the procedure reports that no donor

could be found for the recipient.

- If a recipient has no matching fields, the user has the option of selecting donors at

random until a suitable one is found. This normally occurs with the first donor

selected. In this case, the k-d Tree is not used in the search for a donor. See below for

a more detailed explanation.

Construction of the k-d Tree

It would be possible to carry out the search for donors without a tree structure, but efficiency is

increased by using a k-dimensional tree, where k is the total number of matching fields used in

the entire data group. In constructing the tree, the population of donor records is partitioned into

smaller and smaller groups of similar records. In this way, donors which are close to a given

recipient tend to be located together in certain branches of the tree. In addition, some branches of

the tree can be excluded from the search because it can be deduced that they cannot contain

donors closer than the ones which have already been found.

Each point at which the tree splits into two branches is called a node. The first, or highest, level

is called the root node which represents all donor records in the tree. At the root node, the k

matching fields used are examined and the field which has the largest range of transformed values

is chosen. This is called the branching field of the root node. A splitting value is chosen such

that it will divide the donors into two groups which are as equal as possible. If there is an even

number of donors and if the central values are not identical, the splitting value is the same as the

median. If there is an odd number of donors and if the central values are not identical, then the

PERFORM DONOR IMPUTATION

7-13

splitting value is the average of the
2

1n
 and the 1

2

1n

 values. If the central values are

identical, Banff makes the two groups as equal as possible while still ensuring that any sets of

identical records remain together. In this case, the splitting value is the average of the central

values and the value immediately before or after the group of identically valued records. Once

the branching field and splitting values have been calculated, two nodes are formed at the next

lowest level, each representing about half of the donors of the higher level.

The selection of branching fields and splitting values continues until all nodes contain no more

than 16 records (the bucket size). A node which has 16 or less donors is called a terminal node.

A terminal node may contain more than 16 records only if all the donors represented by the node

have exactly the same values in all the matching fields. In this case, the identical donors would

be assigned to the same terminal node, even if their number were greater than 16. The set of all

terminal nodes provides a partition of the k-dimensional space into mutually exclusive and

exhaustive subsets of donors.

Example of Construction of a Tree

Consider an example with eight donors which are to put into a k-d tree with a bucket size of only

two. Such a small bucket size is used here to keep the example manageable. Banff always uses

a bucket size of 16 in practice. Note that only donors are given in the list below, so there may

be transformed data values belonging to recipients which are in between those which appear here.

 Transformed Values

 x y

donor 1 .10 .20

donor 2 .30 .50

donor 3 .40 .60 (Sorted

by x) donor 4 .50 .55

donor 5 .50 .80

donor 6 .50 .70

donor 7 .85 .95

donor 8 .95 .60

The letters used to identify each node in the following description are the same as those used in

Figure 7.3. At each node, the first step in the construction of the tree is to decide which variable

is to be used as the branching field. Since the variables x and y are the only match fields in this

example, the branching field will always be one or the other of these fields. At the root node,

node A, the x values of all the donors have a range of .95 -.10 =.85 and the y values of the same

donors have a range of .95 -.20 =.75. Therefore, x is chosen as branching field. The next step is

to split the donors into two groups as evenly as possible. Normally the split would be between

donors 4 and 5, but donors 4, 5 and 6 have the same value for x, so the split must be either just

before or just after this group, that is, either between donors 3 and 4 or between donors 6 and 7.

Splitting between donors 3 and 4 makes the split as even as possible. The splitting value is

calculated as .45, the average of the values of donors 3 and 4. All records with values of x ≤ .45

are associated with node B, while those with x >.45 are associated with node C. Node B

represents all donors with x ≤ .45 while node C represents all donors with x >.45. The equality is

always assigned to the left node. It is possible for a recipient to have a value of x exactly equal to

.45, but no donor can have this particular value since the splitting value is the average of two

consecutive donor values.

PERFORM DONOR IMPUTATION

7-14

Node B now represents three records (donors 1, 2 and 3) and cannot be a terminal node since the

terminal bucket size is two. The range of x for these records is .30 and the range for y is .40, so y

is chosen as the branching field for this node. An odd number of records cannot be divided

exactly in half. In this situation, Banff always splits between the central value and the next larger

value. Here, there are three records and Banff splits between the second and third. Donors 1 and

2 are associated with node D and donor 3 is associated with node E. Both these nodes represent

two or fewer records, so they both become terminal nodes. All records at node D have x ≤ .45

and y ≤ .55 while those at node E have x ≤ .45 and y >.55.

The construction of the tree continues at node C. The variable x has a range of .45 and y has a

range of .40 so x is chosen as the branching field. It does not matter that x was also chosen as the

branching field at node A. The donors are split at .675 with donors 4, 5 and 6 going to node F

and donors 7 and 8 going to node G. Node G becomes a terminal node because it represents only

two records. All records at node G must have values of x >.675, but may have values of y

anywhere in the range (0,1).

At node F, y is used to split donors 4, 5 and 6 because it has the greater range. The splitting value

is the average of the values of donors 5 and 6. Donors 4 and 6 go to terminal node H and donor 5

goes to terminal node I. Records at terminal node H have .45 < x ≤ .675 and y ≤ .75. Records at

terminal node I must have .45 < x ≤ .675 and y > .75.

 Figure 7.3 Example of the construction of a k-d tree

PERFORM DONOR IMPUTATION

7-15

Recipients with Matching Fields – Traversing the

Tree

Now suppose that Banff is searching the tree

which has just been constructed in the previous

example to find the closest donor for a recipient

with transformed values of .53 and .74 for x and y.

A value of two will be used for the parameter n.

This value is too small to be used in most

applications, but is chosen here so that the

example may be of manageable size. Since there

are only two matching fields in this example, the

partitioning of the donor population may be

represented by a two dimensional graph. Figure

7.4 shows the areas of the plane which are

represented by each of the terminal nodes. The

donors are marked with an "x" and the recipient is

marked with an "*". Figures 7.3 and 7.4 show

different ways of representing the same k-d tree.

Figure 7.3 emphasizes the hierarchical relationship

of the nodes while Figure 7.4 emphasizes how the

terminal nodes partition the donor space. Figure 7.3 is the usual way of representing the k-d tree;

graphs such as Figure 7.4 cannot be represented in the higher dimensions which would be

necessary for virtually all applications.

At the beginning of the search the set of n closest donors is empty. However, the set will acquire

members and, as the search proceeds, may have some of the original members replaced by donors

which are even closer to the recipient.

The search begins at node A, the root node. This is not a terminal node so the search proceeds to

node C since the recipient's value for x is greater than .45 and so is in the range represented by

node C. Node C is not a terminal node so the search continues. The recipient's value of x, the

branching field, is less than .675 so the search goes to node F. Node F is not a terminal node so

the search continues to node H because the recipient's value of y is less than .75. This is the first

terminal node that has been encountered in the search so the set of n closest donors is empty. The

parameter n is equal to two and there are two donors represented by node H so both donors are

put into the set of closest donors.

Figure 7.4 Terminal nodes partition the

donor space

PERFORM DONOR IMPUTATION

7-16

The next step is to decide whether or not

there can be any donors at the opposite node,

node I, which are closer to the recipient than

the ones already selected. This decision is

based on the results of a test called the

"bounds-overlap-ball" test described by

Friedman, Bentley and Finkel (1977). This

test ensures that a node will not be searched

if the closest possible donor represented by

that node is farther away than the farthest

donor which has already been selected in the

group of n closest donors. The test

determines if the bounds of the opposite

node overlap a ball whose centre is the

recipient and whose radius is the distance

between the recipient and the farthest donor

in the current group of n records. The donor

in the current closest set which has the

greatest distance from the recipient is donor

4 at a distance of .19. The dashed line representing a ball of radius .19 centred on the recipient at

(.53, .74) overlaps the bounds of node I, as may be seen in Figure 7.5. In fact, there may be

donors at node I which have a distance from the recipient of just over .01. This could occur if, for

example, a donor had the same value of x as the recipient and a value of y slightly greater than

.75. Thus, node I must be searched since it is possible to find a donor at that node which is closer

to the recipient than the donors which are currently in the set of n closest donors.

Node I is a terminal node, so the distance between its single donor (donor 5) and the recipient is

compared to those of the donors already in the set of n closest donors. This distance is .06 and is

less than that of donor 4 so donor 5 is put into the set and donor 4 is dropped.

The search returns to node F and, since both node H and I have been visited, the next decision is

whether or not to investigate node G. The bounds-overlap-ball is applied here, as was done at

node H. The most distant in the group of n closest donors is now donor 5 which is at a distance

of .06. In Figure 7.5, it may be seen that the dotted line representing a ball with radius .06

centred on the recipient does not overlap the bounds of node G. All donors at node G have values

of x >.675 so all donors must be at least .675 -.530 =.145 away from the recipient, even if their y

values are exactly the same as the recipient. Therefore it would be pointless to search node G.

The search goes back to node C and, since node F has been visited and node G has been tested,

the next decision is whether or not to investigate node B. The most distant in the group of n

closest donors is still donor 5 at a distance of .06. In Figure 7.5 it may be seen that the dotted line

representing a ball with radius .06 centred on the recipient does not overlap the bounds of node B,

so it is not necessary to search this branch of the tree. Donors belonging to node B must have x

.45 which places them at a distance of at least .08 from the recipient. This completes the search

of the tree. Donors 5 and 6 are the members of the set of n closest donors.

When the group of n closest donors has been assembled, the closest donor is examined to ensure

that it does not have FTE flags on fields to be imputed and to determine whether the recipient

would pass the post imputation edits if the closest donor's values were transferred to the fields

requiring imputation. If this is successful, the imputation is performed and the next recipient is

Figure 7.5 Use of the bounds-overlap-ball test

PERFORM DONOR IMPUTATION

7-17

processed. If the closest donor does not allow the recipient to pass the post imputation edits, then

the next closest donor is tried. This continues until a donor is found or until all n donors in the

group have proved unsuitable. If no suitable donor is found the procedure prints a message to that

effect and goes to the next recipient.

In this small example, the branching field was always a member of the recipient's group of

matching fields. In practice, there would likely be many cases in which this is not so. When this

happens, the portions of the tree to the right and left of the node in question must both be

searched because the branching field does not limit the suitable donors from the point of view of

a recipient without that matching field. In this case, Banff always searches the left side on the

way down the tree and the right side on the way back up.

Recipients With No Matching Fields

The k-d tree is not used to search for donors when the recipient record being processed has no

matching fields. Instead, the user can choose to have a record selected at random from the donor

population. If this option is not selected, Banff will not search for a donor. If this option is

selected, a donor record is randomly selected and a check is done on the selected donor record to

determine if there have been any fields identified as fields to exclude (FTE) which correspond to

any of the recipient's fields to impute. If this is the case, the donor cannot be used and another

donor is drawn randomly from the reduced donor population. Otherwise, if the record resulting

from the imputation passes the post imputation edits, the imputation is performed.

While it might seem that a random search for a suitable donor could be quite long, this is unlikely

to be the case. This is due to a particular feature of recipients which have no matching fields.

Recall that when the acceptable values of the recipient record are substituted into the original

edits, the edits which define the reduced set do not involve any variables other than those which

require imputation. Since all donor records have passed the original edits, the fields to be

transferred must be consistent with each other and will still be consistent after being transferred

as a group into the recipient record. Nor can these fields cause other edits to fail since none of the

acceptable fields are involved with them, given the actual values of that particular recipient.

This relationship is true only if the feasible region defined by the original edits is wholly

contained in the feasible region defined by the post imputation edits. If there are portions of the

original feasible region which are outside the post imputation region, then a donor which falls

into one of these portions cannot be used successfully to impute for some recipients since the

relationship required by the post imputation edits for the recipient is more restrictive than that

which was required of the donor when it passed the original edits.

Post Imputation Edits

Banff places no constraints on the post imputation edits except that all variables referred to in the

original edits must also be referred to in the post imputation edits, and vice versa, even if only in

edits that bound the variables above or below. The post imputation edits are usually more relaxed

than the original edits, although the user may choose to have them the same or even more

restrictive. It is usual to replace equalities in the original edits by two inequalities which give an

upper and lower bound on the total. Otherwise, for records which initially failed the equality edit,

Donor Imputation will search until a donor is found which happens to have a value which will

satisfy the equality exactly. This may result in the rejection of many potential donors which are

close to the recipient and the eventual selection of a donor which is not close to the recipient, but

happens to have that single required value. It is also quite possible that no donor would be found

with the "right" value.

IMPUTATION ESTIMATORS

8-1

8. PROC ESTIMATOR – IMPUTATION ESTIMATORS

Purpose

This procedure imputes one variable at a time using a variety of imputation estimators. The user

may choose from 20 pre-defined imputation estimator algorithms that are hard-coded into the

system, or may specify their own custom-defined algorithms (the terms “imputation estimators”

and “algorithms” are interchangeable here). There are two types of algorithms available in Banff:

estimator functions and linear regression estimators. These algorithms may reference current and

historical data. All historical data are assumed to be correct. The user may choose to base any of

the required parameters (means or regression coefficients) on all acceptable values in the variable

or may describe a subset of records to be used in the calculation of the parameters. Because the

algorithms are applied independently to selected variables, the resulting imputed records may not

pass the original edits. The user may reprocess the imputed records through the Error

Localization procedure of Banff or their own error localization routine to determine if this has

happened.

Types of Algorithms

Estimator functions are mathematical expressions involving current and/or historical values of

some variables of the record being imputed, and current and/or historical means. The

mathematical expressions may include parentheses and the arithmetic operators addition (+),

subtraction (-), multiplication (*), division (/), and exponentiation (^).

Linear regression estimators are estimators which impute for variables using linear regression

models of the general form

i
p

imTm
p

i3T3
p

i2T2
p

i1T10i ε̂xβ̂xβ̂xβ̂xβ̂β̂ŷ m

m

3

3

2

2

1

1

where the Tj refer to current or historical periods, and the pj are exponents. The variable yi being

imputed is the dependent variable in the model, and the auxiliary variables xij are the independent

variables, or regressors. The jβ̂ are the regression coefficients, the values of which are solved for

by using the method of least squares. The iε̂ is a random error term, which can be added to the

model to introduce some variability into the fitted values of the yi.

Description of the Method

The user must specify several options each time an imputation estimator algorithm is applied to a

variable. Several variables may be processed in one execution of the procedure. More than one

algorithm can be specified for a specific variable in that execution. If the first algorithm defined

for a variable cannot provide an imputed value, it will try with the next algorithm.

Any parameters required by the algorithms are calculated before the procedure is executed, and

the values of these parameters remain unchanged throughout the execution of the procedure. That

is, the parameter values are not recalculated during execution of the procedure to reflect newly

imputed variables. If the procedure is run a second time with different algorithms, all parameters

required by the new second procedure are calculated and may reflect the imputation carried out in

the previous procedure. This calculation of parameters is done each time a new procedure is to be

executed, with all values imputed in previous runs of the procedure available for parameter

calculation.

IMPUTATION ESTIMATORS

8-2

Specification of the Estimator

The following choices must be made for the application of Proc Estimator. The user must store

this information in a SAS dataset, which is then accessed when the procedure is run.

- Algorithm Name, Field ID, Auxiliary Variables: these choices describe the basic

imputation which is to be performed. The user specifies the imputation

algorithm to be applied, the variable which is to be imputed and the auxiliary

variables, if required by the selected algorithm.

- Weight Variable: if the selected algorithm uses means or is a linear regression,

then the user may choose to name a variable to be used as a weight in the

calculation of the parameters. The use of a weight variable is discussed further

below.

- Variance Variable, Variance Exponent, Variance Period: The user may include a

model variance variable in the definition of a linear regression estimator. This

variable is taken into account in the calculation of the regression coefficients and

the random error term; this is discussed in more detail below.

- Random Error Term: The user may also include a random error term in the

estimator specification. This random error, or residual, is added to the value of

the imputed variable in an attempt to create the same variability in the imputed

values as in the non-imputed values.

- Exclusion from Calculation of Parameters: if the selected algorithm uses

parameters, then the user may exercise some control over which records

contribute to these parameters. Fields to be Excluded (FTE) fields may be

omitted; fields which have already been imputed may be omitted, and other fields

specified by the user may also be omitted. These options are discussed further

below.

- Criteria for the Calculation of Parameters: the user may specify a minimum

percentage and number of records which must be available for the parameters to

be calculated. This is discussed further below.

IMPUTATION ESTIMATORS

8-3

Description of the Banff Pre-Defined Algorithms

Notation: iCy is the field requiring imputation for the unit i at time C (the

current period).

 iHy is the value of the field requiring imputation for the unit i at time

H (the historical period).

 iHiC x,x is the auxiliary variable for the unit i in the current or historical

period, respectively.

 itititit z,w,v,u other auxiliary variables for the unit i at time t (either current or

historical).

 HC y,y are the means of the field requiring imputation taken over all

eligible records in the current and historical files, respectively.

 HC x,x is the mean of the auxiliary variable taken over all eligible

records in the current and historical files, respectively.

 jβ̂ is the jth regression coefficient in the regression model calculated

over all eligible records in the current or historical files

Means and regression coefficients are based on all eligible records, i.e., the records which remain

after user-specified exclusions have been made and after Banff has ensured that regression

parameters or means in the numerator and denominator are based on the same records.

Imputation is not performed if there are not enough records to satisfy the user-specified criteria

for the calculation of parameters. Imputation is also not performed if the current or historical

values of the auxiliary variables required by the algorithm are not valid (missing, needing

imputation, or negative if applicable) for the record being imputed.

The following 20 algorithms are currently pre-defined in Banff. The format used to specify the

algorithm within Banff is displayed for future reference; this same format will be utilized by the

user when defining their own algorithms.

IMPUTATION ESTIMATORS

8-4

Estimator Functions
Algorithm: AUXTREND

Equation:

iH
iH

iC
iC y

x

x
ŷ

Format: aux1(c,v) * fieldid(h,v) / aux1(h,v)

Description: The value from the previous survey for the same unit, with a trend adjustment

calculated from an auxiliary variable, is imputed

Algorithm: AUXTREND2

Equation:

iH

iC

iH

iCiH
iC

v

v

u

u

2

y
ŷ

Format: fieldid(h,v) / 2 * (aux1(c,v)/aux1(h,v) + aux2(c,v)/aux2(h,v))

Description: An average of two AUXTRENDs is imputed

Algorithm: CURAUX

Equation:
iCiC xŷ

Format: aux1(c,v)

Description: The current value of a proxy variable for the same unit is imputed

Algorithm: CURAUXMEAN

Equation:
CiC xŷ

Format: aux1(c,a)

Description: The current average of a proxy variable is imputed

Algorithm: CURMEAN

Equation:
CiC yŷ

Format: fieldid(c,a)

Description: The mean value of all (user-defined) respondents for the current survey is

imputed

Algorithm: CURRATIO

Equation:

iC
C

C
iC x

x

y
ŷ

Format: fieldid(c,a) * aux1(c,v) / aux1(c,a)

Description: A ratio estimate, using values of all (user-defined) respondents from the

current survey is imputed

Algorithm: CURRATIO2

Equation:

C

iC

C

iCC
iC

v

v

u

u

2

y
ŷ

Format: fieldid(c,a)/2 * (aux1(c,v)/aux1(c,a) + aux2(c,v)/aux2(c,a))

Description: An average of two CURRATIOs is imputed

IMPUTATION ESTIMATORS

8-5

Algorithm: CURSUM2

Equation:
iCiCiC vuŷ

Format: aux1 + aux2

Description: The sum of two auxiliary variables from the current data table

Algorithm: CURSUM3

Equation:
iCiCiCiC wvuŷ

Format: aux1 + aux2 + aux3

Description: The sum of three auxiliary variables from the current data table

Algorithm: CURSUM4

Equation:
iCiCiCiCiC zwvuŷ

Format: aux1 + aux2 + aux3 + aux4

Description: The sum of four auxiliary variables from the current data table

Algorithm: DIFTREND

Equation:

iH
H

C
iC y

y

y
ŷ

Format: fieldid(c,a) * fieldid(h,v) / fieldid(h,a)

Description: The value from the previous survey for the same unit, with a trend adjustment

calculated from the difference of reported values for the variable, is imputed

Algorithm: PREAUX

Equation:
iHiC xŷ

Format: aux1(h,v)

Description: The historical value of a proxy variable for the same unit

Algorithm: PREAUXMEAN

Equation:
HiC xŷ

Format: aux1(h,a)

Description: The historical average of a proxy variable for the same unit is imputed

Algorithm: PREMEAN

Equation:
HiC yŷ

Format: fieldid(h,a)

Description: The mean value from the previous survey of all (user-defined) respondents is

imputed

Algorithm: PREVALUE

Equation:
iHiC yŷ

Format: fieldid(h,v)

Description: The value from the previous survey for the same unit is imputed

IMPUTATION ESTIMATORS

8-6

Linear Regression Estimators
Algorithm: CURREG

Equation:
iC10iC xβ̂β̂ŷ

Format: intercept, aux1(c)

Description: A simple linear regression based on one independent variable from the current

data table

Algorithm: CURREG_E2

Equation: 2
iC2iC10iC xβ̂xβ̂β̂ŷ

Format: intercept, aux1(c), aux1(c)2

Description: A regression based on the value and the squared value of a variable from the

current data table

Algorithm: CURREG2

Equation:
iC2iC10iC vβ̂uβ̂β̂ŷ

Format: intercept, aux1(c), aux2(c)

Description: A linear regression based on two independent variables from the current data

table

Algorithm: CURREG3

Equation:
iC3iC2iC10iC wβ̂vβ̂uβ̂β̂ŷ

Format: intercept, aux1(c), aux2(c), aux3(c)

Description: A linear regression based on three independent variables from the current data

table

Algorithm: HISTREG

Equation:
iH10iC yβ̂β̂ŷ

Format: intercept, fieldid(h)

Description: A linear regression based on the historical value of the variable to impute

User-Defined Algorithms

The user may choose to define one or more of their own imputation estimator algorithms, rather

than only selecting only from among the 20 pre-defined algorithms. The definition of these

algorithms must be done before the user specifies to Banff which of the pre-defined and user-

defined algorithms are to be used for imputation, i.e. before the specification of the procedure is

done as described earlier.

Several options must be specified when the user is defining their own algorithm. The user must

store this information in a SAS dataset, which is then accessed when the procedure is run.

- Algorithm Name: the user can uniquely identify the algorithm that they are creating

in this field by specifying a name with alphanumeric characters.

- Algorithm Type: the type of algorithm is identified in this field as being either an

estimator function (EF) or a linear regression (LR).

- Algorithm Status: the user specifies an alphanumeric status code that they want to

IMPUTATION ESTIMATORS

8-7

associate with the algorithm. This status code is used to update the field status table

by recording the imputation method which was used to impute a field. Note that the

system automatically adds an ‘I’, for imputation, in front of the code.

- Algorithm Formula: the algorithm is defined using a combination of variable names,

pre-defined keywords, and mathematical operators. The syntax of the definition is

dependent on the type of the algorithm.

- Description: comments about the algorithm can be entered in this field.

Weighted and Unweighted Parameter Calculations

The user may specify a variable to be used as a weight in the calculation of the parameters of one

or more estimators. This would be appropriate if, for example, records in the data group being

imputed had different probabilities of selection in the original sampling plan. If a weight variable

is chosen, then any means used by that particular algorithm are weighted means, calculated as

follows.

i
iH

i
iHiH

H

i
iC

i
iCiC

C
w

yw

y,
w

yw

y

Similarly, this weight variable is taken into account in the calculation of the regression

coefficients.

The specified weight may be any variable on the current data SAS dataset. It is the user's

responsibility to ensure that the weight field is valid; Banff will terminate execution before

attempting any imputation if any values are negative (if applicable) or missing. If the chosen

algorithm requires a historical mean as well as a current mean, then the same variable is

automatically used as the weight in both time periods. To calculate the historical mean, the

weight values are taken from the corresponding variable in the historical data SAS dataset.

Model Variance Variable in Linear Regressions

The user may include a model variance variable in the definition of a linear regression estimator.

This variable is taken into account in the calculation of the regression coefficients and the random

error term. The model variance variable is related to the variable being imputed in the sense that

the variance of the imputed variable is proportional to the model variance variable. That is, the

variance for the variable being imputed is estimated to be
2

iσv , where iv is the model variance

variable for record i, and
2σ is the population variance. The variance

2σ is assumed to be the

same for all records in the data group, but is not required to be known. It is the user's

responsibility to ensure that the model variance field is valid; if any values are missing or not

greater than zero, Banff will terminate processing before attempting any imputation.

Random Error Term

The user may also include a random error term in the estimator specification, for both estimator

functions and linear regression estimators. This random error, or residual, is added to the value of

the imputed variable in an attempt to create the same variability in the imputed values as in the

non-imputed values.

IMPUTATION ESTIMATORS

8-8

If the random error is specified, Banff will first calculate the value for the variable to be imputed,

according to the specified estimator. Then, Banff will randomly select one of the eligible records

which contributed to the parameter calculations. The random selection will incorporate the record

weight in the probability of selection if the weight is to be included in the imputation step

calculations. The residual for the selected eligible record will be calculated, which is the

difference between the actual reported value and the value estimated by the estimator. As well,

the model variance variable will be included in the calculation of the random error if a model

variance variable is included in the definition of a linear regression estimator.

If the residual for the randomly selected record J is denoted by RJ, and the model variance

variable by v, then the random error added to the imputed value yi is:

1m

1m

1m

1m

p

JT

p

iT
Ji

v

v
Rε̂

Note that if no model variance variable is included in the estimator, then the random error added

to the imputed value is simply the residual RJ from the randomly selected record J.

Parameter Calculation in Linear Regression

As noted earlier, the general form of the regression model used in specifying linear regression

algorithms is

i
p

imTm
p

i3T3
p

i2T2
p

i1T10i ε̂xβ̂xβ̂xβ̂xβ̂β̂ŷ m

m

3

3

2

2

1

1

where the Tj refer to current or historical periods, and the pj are exponents. The variable yi being

imputed is the dependent variable in the model, and the auxiliary variables xij are the independent

variables, or regressors.

The parameters in a linear regression algorithm are the regression coefficients, denoted by jβ̂ .

The values of these parameters are calculated by applying the method of least squares. Suppose

that the values of the independent variables xij, raised to the appropriate exponent, are represented

in the matrix X as follows:

m

m

3

3

2

2

1

1

m

m

3

3

2

2

1

1

m

m

3

3

2

2

1

1

m

m

3

3

2

2

1

1

p

nmT

p

n3T

p

n2T

p

n1T

p

3mT

p

33T

p

32T

p

31T

p

2mT

p

23T

p

22T

p

21T

p

1mT

p

13T

p

12T

p

11T

xxxx1

xxxx1

xxxx1

xxxx1

X

The hth row of X represents the hth eligible record for the calculation of the regression

coefficients, and the number of rows in X is the number of eligible records. The first column of X

is associated with the intercept parameter 0β̂ . If the intercept is not included in the regression

model, then this first column is excluded from the matrix X. The other m columns of X are

IMPUTATION ESTIMATORS

8-9

associated with the independent auxiliary variables xij. There are as many of these columns in X

as there are independent variables specified in the regression model.

For each of the eligible records, the current values for the variable being imputed are represented

by the column vector Y:

nC

2C

1C

y

y

y

Y

If a model variance variable v has been included in the definition of the estimator being

processed, or a weight variable was included in the specification of the imputation estimators,

these are taken into account in the diagonal matrix D:

1m

1m

1m

1m

1m

1m

1m

1m

p

nT

nC

p

3T

3C

p

2T

2C

p

1T

1C

v

w
000

0
v

w
00

00
v

w
0

000
v

w

D

Note that if no weight variable w is specified, then the value of the weight variable defaults to

whC=1 for each eligible record. Similarly, if no model variance variable is specified, then

1v 1m

1m

p

hT

 for each eligible record. The column vector of the regression coefficients is denoted

by:

required isintercept no if

β̂

β̂

β̂

β̂

β̂ required, isintercept an if

β̂

β̂

β̂

β̂

β̂

m

3

2

1

m

2

1

0

The values of the regression coefficients are obtained by solving the linear system

 DYXDXX β̂

IMPUTATION ESTIMATORS

8-10

The solution is provided by:

 DYXDXX
1

β̂

Exclusion from the Calculation of Parameters

When parameters are required by algorithms, they are calculated each time Proc Estimator is

executed before any imputation is actually carried out. All algorithms specified for the procedure

then use these calculated parameters; the parameter values do not change during the execution of

the procedure to reflect newly-imputed values. In addition to choosing a weight variable, the user

may influence the parameters by choosing to include or exclude three types of values when the

parameters are calculated. These three types of values are:

 - Fields to Exclude(FTE) fields,

 - fields which have already been imputed and

- all variables on other records which are identified by the user on the current or

historical data SAS datasets

In addition to user-specified exclusions, Banff may automatically exclude some records so that

the parameters of an algorithm are based on the same records. Each of these four types of

exclusion is discussed in turn.

The Field to Exclude (FTE) code which may be used by the Donor Imputation procedure to

exclude values from being donated may also be used to exclude records from contributing to the

parameters in algorithms. FTE fields are not extreme enough to require imputation, but are

sufficiently unusual that the user may wish to omit them from the calculation of the parameters.

Excluding FTEs refers only to FTE codes in the field to be imputed or in the auxiliary variables;

FTE codes in any other fields are ignored. See Outlier Detection (Section 4) for a description of

how FTE fields are identified.

When a parameter is calculated, there may be fields which have already been imputed by the

Donor Imputation procedure or by another imputation estimator. The user may choose to exclude

such fields from contributing to the parameters. Excluding these fields ensures that only original

respondent data are used for the parameters. Some users view this as an important advantage;

others prefer to base the parameters on as many records as possible. A disadvantage of excluding

imputed data is that relying only on data which originally passed the edits may distort the

parameter values. For example, suppose that a high percentage of large units passed the edits

while a low percentage of small units passed. If some imputation has been done, and if it has

preserved the relationship of large and small units, then using all available data should produce

means closer to the overall "true" means. Excluding the imputed fields in this case would

produce means which are closer to the behaviour of the larger units. Note that values in fields

imputed by the Deterministic Imputation procedure are treated as original data.

The user may also specify an “exclusion variable” in the current and/or historical data SAS

datasets which flags entire records that should be excluded from contributing to the parameters.

The exclusion variable remains in effect for the entire execution of the procedure. The user can

specify the same exclusion variable or a different one for the next application of the procedure.

In addition to the exclusions specified by the user, Banff may automatically exclude some

individual fields from contributing to the parameters so that the means in the numerator and

denominator of certain estimator functions, or the regression parameters in a linear regression, are

IMPUTATION ESTIMATORS

8-11

based on the same set of records. This further reduces the number of respondent values which are

available to contribute to the parameter calculation.

Criteria for Calculation of Parameters

If the algorithm involves parameters, the user must specify a required number and percentage of

eligible records which must be available for the parameters to be calculated. The number and

percentage are calculated after all exclusions have been performed, so the expected number of

exclusions must be taken into account when specifying the criteria. If the criteria are not

satisfied, Banff will not proceed with the calculation of parameters and will print a message to

that effect.

Calculation of Imputation Estimators – First Execution of Proc Estimator

Consider the following example.

Suppose the user has decided that for the first application of Proc Estimator that they would like

to use an unweighted linear regression estimator of the form: iC10iC xββy . Note that this

is the same as the system-defined algorithm CURREG. If this estimator were not available as a

system-defined algorithm, the user would have to define it as follows:

 Algorithm: CURREG

 Algorithm Type: LR

 Algorithm Status: LR1

 Format: Intercept, aux1(c)

Description: A simple linear regression based on one independent variable from

the current data table

The user proceeds with the specification of this estimator. Note that no weight variable is

specified and that an exclusion variable is present in the current data file. A random error term

will be added to the imputed value.

 Exclude Outliers (Y/N): Y

 Field to be Imputed: y Exclude Imputed (Y/N): Y

 Algorithm: CURREG Exclude Records From

 Auxiliary Variable: x Current File Where: z = 0

 Random Error (Y/N): Y Accept Negative(Y/N): N

Current File – Before Imputation

Ident w x y z EXCL

R01 10 99 FTE 4 200

R02 10 4 - 1 FTI 150

R03 10 4 7 250

R04 10 -2 9 IDN 200

R05 10 2 5 0 E

R06 10 3 FTI 8 100

R07 5 6 12 500

R09 5 6 14 600

R10 5 -1 - 1 FTI 500

Suppose that the variable y is to be imputed by the CURREG algorithm with x as the auxiliary

IMPUTATION ESTIMATORS

8-12

variable. The user has chosen to exclude FTEs, to exclude imputed values and also wants to

exclude from the calculation of parameters any records with z=0 in the data file. Also, the user

has chosen not to accept negative data. So, several records will not contribute to the calculation

of the parameters, in this case the regression coefficients. Because the calculation of the

coefficients in this linear regression depend on both variables x and y of the current file, only the

records containing valid data for these two fields will be retained.

In this example, record R01 cannot be used because x has an FTE flag. The value of y in record

R02 is one of the fields which requires imputation, so record R02 will not be used in the

calculation of the parameters. Record R03 contributes to the parameters. Record R04 cannot be

used for two reasons: first, it has a field (y) which was imputed by donor imputation but the user

wants to exclude imputed values from the parameter calculations, and second, the value of x is

negative but the user has chosen to consider negative values invalid. The value of z in record R05

satisfies the exclusion condition (exclusion variable EXCL=’E’) and so both the x and y values of

that record are also excluded from the parameters. The variable x has FTI status in Record R06,

so R06 will not contribute to the parameters. Records R07 and R09 contribute to the parameters.

Record R10 requires imputation for y so it cannot be used in the parameter calculations. Also

note that the variable y cannot be imputed for R10 in this step because the algorithm requires the

auxiliary variable x to have a valid value available but the user has chosen to reject negative

values.

With the regression model specified, the method of least squares solutions for the regression

coefficients are:

JC10JCi2

CiC

CiCCiC
1C1C0 xβ̂β̂yε̂,

xx

yyxx
β̂,xβ̂yβ̂

The unweighted current means for y (the variable to be imputed) and x (the auxiliary variable) are

calculated over the three eligible records as follows.

3
1

C

C

5
3

16

3

664
x

11
3

33

3

14127
y

Then, the parameters are calculated to be 5β̂0 and 3β̂1 . Suppose that Banff had

randomly chosen R07 as the record which will donate its residual to R02. Then the residual for

R02 is:

 163512ε̂ε̂ R07R02

Finally, the value of y to be imputed for record R02 using the CURREG algorithm with a random

error term would be:

 61435ε̂xβ̂β̂ŷ R02R02C10R02C

IMPUTATION ESTIMATORS

8-13

Calculation of Imputation Estimators – Second Execution of Proc Estimator, First Estimator

Now suppose that the user wants to specify the imputation of y with the pre-defined Difference

Trend (DIFTREND) algorithm in a second application of Proc Estimator. The user has chosen to

use a weight variable, but not to add a random error term to the imputed value. An auxiliary

variable is not required for this algorithm. Records with z = 0 in the current data table are

excluded. As well, the user has chosen to exclude outliers, but has decided to allow imputed data

to contribute to the means. Also, the user has chosen to accept negative values as valid values.

Note that the y value of record R02 has been imputed by the CURREG algorithm in the first

execution of the procedure. The code ILR1 (imputation by CURREG) indicates the method used

for imputation.

 Field to be Imputed: y Exclude Imputed (Y/N): N

 Algorithm: DIFTREND Exclude Records From

 Weight Variable: w Current File Where: z = 0

 Random Error (Y/N): N Accept Negative (Y/N): Y

 Exclude Outliers (Y/N): Y

 Current File Historical File

Ident w x y z EXCL Ident w x y z

R01 10 99 FTE 4 200 R01 8 3 6 125

R02 10 4 6 ILR1 150 R02 8 2 7 100

R03 10 4 7 250

R04 10 -2 9 IDN 200 R04 8 2 4 0

R05 10 2 5 0 E R05 8 1 4 150

R06 10 3 FTI 8 100 R06 8 2 7 300

R07 5 6 12 500 R07 4 7 12 200

 R08 4 4 8 175

R09 5 6 14 600 R09 4 5 10 200

R10 5 -1 -1 FTI 500 R10 4 -7 14 250

Here there are two means to calculate: y in the current data table and y in the historical data table.

For this algorithm, if a record cannot contribute to one mean, then it cannot contribute to the other

because means in the numerator and denominator must be based on the same records.

In this case, record R01 is used because the FTE is not in one of the variables for which a mean is

required. The user has chosen to accept imputed data in the means, so R02 can be included

because its current file value for y was imputed in the previous execution of Proc Estimator. R03

is not used because there is no corresponding historical record and the numerator and

denominator must be based on the same records. R04 can be used because the user has allowed

imputed data to be used in the calculation of parameters, and the value for y was imputed by the

donor imputation procedure before this procedure was initiated. Note that the value of z for R04

in the historical table is z = 0, but the exclusion condition only specifies z=0 in the current data

table. R05 is not used because the value of z in the current file satisfies the exclusion condition

(exclusion variable EXCL=’E’). Record R08 is not used because there is no corresponding

current record. Records R06, R07 and R09 are used. The record R10 is not used because of the

FTI (Field to Impute) flag in y.

The current and historical means for y, the variable to be imputed, using the weight variable w,

are calculated over the five eligible records as follows.

IMPUTATION ESTIMATORS

8-14

8

50

400

5510101010

145125810910610410
yC

7

40

280

448888

10412478487868
yH

The value of y to be imputed for record R10 using the Difference Trend estimator would be:

1614
7

8
y

y

y
ŷ R10H

H

C
R10C .

Calculation of Imputation Estimators – Second Execution of Proc Estimator, Second Estimator

Now suppose that in the second execution of Proc Estimator that the user also wants to impute for

another variable, this time performing the imputation of x using the Current Ratio (CURRATIO)

algorithm, which is included in the group of algorithms already defined by the system. The user

must be aware that all estimators in a single execution of Proc Estimator must share the same

exclusion condition. Since this is not a new execution of the procedure, the user must use the

same exclusion condition as for the imputation of y with the DIFTREND estimator. So once

again any records with z = 0 in the current data table will be excluded. The user has decided to

again include a weight variable and to accept negative values. A random error term will be added

to the imputed value. The user has also decided to exclude outliers, but will allow previously

imputed values to contribute to the parameters. Note that the y value of record R10 is imputed by

the Difference Trend estimator in the second (current) execution of Proc Estimator. The code IDT

(Imputation by Difference Trend) indicates the method used for imputation.

 Field to be Imputed: x Exclude Outliers (Y/N): Y

 Algorithm: CURRATIO Exclude Imputed (Y/N): N

 Auxiliary Variable: y Exclude Records From

 Weight Variable: w Current File Where: z = 0

 Random Error (Y/N): Y Accept Negative (Y/N): Y

 Current File Historical File

Ident w x y z EXCL Ident w x y z

R01 10 99 FTE 4 200 R01 8 3 6 125

R02 10 4 6 ILR1 150 R02 8 2 7 100

R03 10 4 7 250

R04 10 -2 9 IDN 200 R04 8 2 4 0

R05 10 2 5 0 E R05 8 1 4 150

R06 10 3 FTI 8 100 R06 8 2 7 300

R07 5 6 12 500 R07 4 7 12 200

 R08 4 4 8 175

R09 5 6 14 600 R09 4 5 10 200

R10 5 -1 16 IDT 500 R10 4 -7 14 250

IMPUTATION ESTIMATORS

8-15

Here there are two means to calculate: x in the current data table and y in the current data table.

Similar to the previous example, if a record cannot contribute to one mean, then it cannot

contribute to the other because means in the numerator and denominator must be based on the

same records.

Record R01 cannot be used in the means calculation because it has an FTE status in the x

variable. Because the user has chosen to allow imputed values to contribute to the parameters in

this step and the y value for record R02 was imputed in the previous execution of Proc Estimator,

R02 is used. R03 is used. R04 can be used because its current value for y was previously imputed

by the donor imputation procedure. Record R05 cannot be used since it has a value z=0 in the

current file, which satisfies the exclusion condition (exclusion variable EXCL=’E’). Record R06

is not used because its current value for x is being imputed and has FTI status. Record R08 is not

used because there is no corresponding current record. R07 and R09 are used. The record R10 is

not used because its current value for y is imputed during the active (second) execution of the

procedure. That is, all parameter values are calculated at the beginning of the execution of the

procedure, before any imputation actually takes place. Only values imputed in previous

executions of the procedure are taken into account. The parameters are not recalculated to take

into account data that have been imputed during the active execution of the procedure.

The current means for x, the variable to be imputed, and y, the auxiliary variable, using the

weight variable w, are calculated over the five eligible records as follows:

3

40

120

55101010

6565210410410
xC

8.75

40

350

55101010

145125910710610
yC

Suppose that Banff had randomly chosen R03 as the record which will donate its residual to R06.

Then the residual for R06 is:

1.67
8.75

3
4y

y

x
xε̂ε̂ R03C

C

C
R03CR03R06

Finally, the value of x to be imputed for record R06 using the Current Ratio estimator with a

random error term would be:

4.341.68
8.75

3
ε̂y

y

x
x R06R06C

C

C
R06C

PRORATE

9-1

9. PROC PRORATE – PRORATING

Purpose

This procedure will prorate each record according to an equality edit in an attempt to ensure that

the components of a sum add up to the desired total within each record. It incorporates features

which allow it to discriminate between previously imputed and original data and therefore can be

applied as a post-imputation procedure, as well as a stand-alone treatment. For each case where a

summation does not match the total, the equation in question is submitted one of the two

available prorating algorithms in order to rake the components to match the total. It is then

submitted to a rounding algorithm to ensure the variables involved are output with the proper

number of decimals.

Description of the Method

The user supplies a collection of equality edits to be prorated, contained within an edit group.

Only addition operators may be used within the summation. Edit rules are allowed to be

nested (i.e. dependent) within the edit group, but they can not be independent. Variables
may only appear once on the left-hand side (in a summation) and subsequently once only on the

right-hand side (as a fixed total). Example:

 Edit Group1
 tot1 + tot2 = grandtotal

 a + b + c = tot1

 d + e + f = tot2

The user may specify the edits in whatever order they want, as long as they are logical, since

Banff contains a parser which determines the hierarchy. Note that for the edit group above, the

second and third edits form a subset of the first edit, as “tot1" and “tot2" are subtotals which sum

to the overall total “grandtotal”.

The edits are applied in the hierarchical order to each record within the data group and if the

equalities are not satisfied, the prorating and rounding algorithms are executed. When prorating

elements of an equation, the total to the right of the equal sign will not be adjusted.

The user can specify whether only previously imputed variables should be eligible for prorating,

only original data, or both imputed and original. This feature is implemented by reading the

status codes of the variables involved as found in the input field status SAS dataset, which is

provided by the user or is taken from a previously-executed Banff procedure. Any variable with

a status code beginning with “I” (unique exception: “IDE” for deterministic imputation) will be

considered an imputed variable. A status code of any other kind, or the non-presence of the

variable in the input field status dataset will be taken to indicate the variable is original data.

Variables not eligible for prorating will be removed from the summation and the total adjusted

accordingly before prorating begins. Similarly, zero values will also be removed at this point as

they cannot possibly be modified by the process.

The user also has the option of specifying weights for every component involved in a summation.

In this way, the relative amount of change of each component due to prorating may be controlled,

change being inversely proportional to the weight given. Weights are applied at the component

level; i.e., the same weight applies across all records for that component.

PRORATE

9-2

Syntax Edit Checks

Before prorating begins, a series of edit checks are imposed by the system to ensure that vital

syntax rules are not violated. Examples of this include verifying the hierarchical structure of the

edits and the positivity of weights. If such an error is found, prorating will not be run and an

appropriate error message will be produced instead.

Prorating Algorithms

In the event of a summation not being equal to the total, e.g., yxxx n21 , a prorating

algorithm will be applied. There are two prorating algorithms available to the user, the basic

method and the scaling method.

When all components to be adjusted and their corresponding total have the same sign, the basic

and scaling methods will give equivalent results when all else is equal, i.e., same parameter

values, options, weights, etc.

Basic Method Algorithm

With the basic method, the adjusted value for each of the mh eligible variables xhi in an edit

equation h (h=1,…,r) is calculated as:

m,3,... 2, 1,i

/wx

xy

w

x
xx

1

hjhj

m

1

hjh

hi

hi
hihi

h

hm

j

j

where yh is the fixed total for the edit equation h and the whi is the weight associated with xhi.

Unweighted basic method prorating is simply a special case of weighted prorating where all

whi=1:

him

1

hj

h
hi x

x

y
x

h

j

With the basic method, it is possible that data values could change sign (i.e., from positive to

negative, and vice-versa) unless this situation is prevented from occurring through proper

specification of the Lower Ratio bound parameter, which is discussed below. Also, if the user

prevents this change of sign from occurring and there is a mixture of positive and negative values,

it is possible that even though the overall adjustment to the components is required to be positive

(or negative) for the sum of the components to equal the fixed total, there could be some

components that have positive adjustments made to them while others have negative adjustments

made, depending on their signs and the sign of the total.

PRORATE

9-3

Scaling Method Algorithm

First, the scaling factor k for an edit equation h (h=1,…,r) is calculated across the mh variables

eligible to be prorated xhi as:

r,3,... 2, 1,h

|/wx|

yx

k
h

h

m

1i

hihi

m

1i

hhi

h

where yh is the fixed total for the edit equation h and the whi are the weights associated with the

xhi.

When -1=< kh <=1, the prorated value of xhi for the edit equation h is given as follows:

m,3,... 2, 1,i
0 xifx)/wk(1x

0 xifx)/wk(1x

hihihih

'

hi

hihihih

'

hi

It is very extreme that k>1 or k<-1 happens, for example in a bizarre case such as when the

prescribed total y is a positive value, but all the xi are negative. This indicates a problem that

should be identified and handled during an editing process before prorating. If the calculation

shows k>1 or k<-1, prorating for that record will not be executed, and a warning message given

instead.

Under the scaling method, it is not possible for the sign of the component to change; negative

values can never become positive, and vice versa. Also, if the net change to the components is

positive (negative), then all changes to the prorated components will be positive (negative).

Rounding Algorithm

After the selected prorating algorithm has been applied to an equation, it is possible that many

extra decimal places were needed to enable the summation to equal the total. Therefore it is also

necessary to round the data involved to the number of decimal places desired by the user, and yet

still ensure that the newly-created equality is not broken. The rounding algorithm adjusts all

fields to the correct number of decimal places and ensures the summation still equals the total.

For the equation h:

Step 1. Round the
hix to d+1 decimal places; d=number of decimal places specified by the user.

Step 2. For i=1, round
h1x up or down to

h1x (with d decimals).

Step 3. For i>1, round ui:

1i

1j

hjhjhihi xxxu

 to the final prorated value h1x .

PRORATE

9-4

When the user specifies d=number of decimals places required, three conditions must always be

met:

 - d must be less than or equal to the number of decimals places existing in the data

table

 - d must be greater than or equal to the number of decimals in the total

 - d must be within the interval [0,9].

The default value for d is zero.

After all the xhi have been prorated and rounded for the first equation h=1, the procedure

continues on in the hierarchical order for each of the other r-1 equations, taking into account the

newly prorated values for any of the xhi which may serve as the fixed total yh in subsequent

equations.

Example

Consider the following data submitted to prorating using the scaling method. Using Edit Group 1

(same as above), suppose the user requests all prorated variables be rounded to zero decimal

places, and in addition specifies weights as well as the types of variables to impute as follows:

 Component

 Edit Group 1 Weights Variables to Prorate:

tot1 + tot2 = grandtotal 1,1 All

a + b + c = tot1 1,1,2 Imputed data only

d + e + f = tot2 1,1,1 All

For instance, variable “c” (weight =2) would have a relative prorating adjustment (if necessary)

HALF as great as those for variables “a” (weight = 1) and “b” (weight = 1) due to its weight

being twice as large.

The user has also specified that for the first edit specified, all variables are eligible for prorating;

whereas for the second edit only variables specified as containing previously imputed data are

eligible, and for the third edit once again all variables are eligible. These statuses are detailed

below in the user’s input field status table. The data to be prorated also appear below. The user

has specified that negative data is valid.

Input dataset:

Key Value A B C D E F TOT1 TOT2 GRANDTOTAL
REC001 6 4 -4 10 9 9 12 24 31

Input field status dataset:

Key Value FIELDID STATUS
REC001 A IDN

REC001 C IDT

REC001 E IMP

With this input field status dataset the user has identified all variables that have been previously

imputed. In Banff, all status codes beginning with “I” (except “IDE” for deterministic

imputation) will be considered to indicate previously imputed data. Prorating will assume that

any other variable contains original data.

PRORATE

9-5

Both “tot1" and “tot2" are eligible for prorating according to the variables to prorate specification

and the input field status dataset, and also both have equal weights (=1), therefore the Prorating

procedure calculates the scaling value k over the m=2 eligible components as:

 3652412312412|/wx|yxk
2

1j

jj

2

1j

j

.

Then, the prorated values for TOT1 and TOT2 are calculated as:

10.335/36)(12)-(1TOT1))(k / w-(11TOT TOT1

67.205/36)(24)-(1TOT2))(k / w-(12TOT TOT2

The rounding algorithm is applied next, producing:

TOT1 TOT2 GRANDTOTAL
10 21 31

Continuing with the next level in the hierarchical order, prorating of the second and third edits

gives us:

Key Value A B C TOT1 D E F TOT2

REC001 9 4 -3 10 7.5 6.75 6.75 21

So due to weighting, variable “a” increased by 50% of its original value, which was twice as

much as variable “c”, which increased by only 25% of its original value. Variable “b” was not

previously imputed and therefore ineligible for prorating for this particular record, and so did not

contribute to the calculation of the scaling factor k. All three of the variables d, e, and f

contributed to the calculation of the scaling factor k in the third prorating edit since the user

specified that all variables were eligible to be prorated.

Finally, submitting these two equations to the rounding algorithm results in:

Key Value A B C TOT1 D E F TOT2
REC001 9 4 -3 10 8 6 7 21

Order of Edit Variables

Although the user may specify the edits in any order, various ways of ordering the variables in an

edit may produce different results after applying the prorating algorithm. Sometimes the excess

of the total can not be evenly distributed among the summation variables, and only some of them

receive a share of this difference. In this case, a change in variable order may result in a change

to which variables receive this distributed difference. For example, using the edit x + y = z, the

distributed difference is 1 for the following sum to be prorated: 1 + 1 = 3. In this example, if the

parameter DECIMAL=0, only the first variable x will receive the difference, and the prorated

sum will become 2 + 1 = 3. If this edit is changed to y + x = z, the variable y will be increased by

one. Using this example again, if the first variable has a higher weight than the second variable,

the second variable will receive the difference, i.e. change is inversely proportional to the weight

given, and the prorated sum will become 1 + 2 = 3. In conclusion, the order of the variables may

have an impact on the prorating results.

Bound Limitations

Another option the user has control over is the constraint on relative change of the variables. This

is denoted in the form of Upper Ratio and Lower Ratio bounds on change. For example, if the

PRORATE

9-6

user does not want the final value of any variable to increase by any more than 25% from its

original value after prorating and rounding have successfully completed, they would specify an

Upper Ratio bound = 1.25. It is possible for a variable to be prorated to a zero value if the Lower

Ratio bound is set to 0. If the basic method is being applied and the user does not want any

variables to change sign as a result of the prorating process, this could be achieved by setting the

Lower Ratio bound greater than or equal to 0. By default, the Lower Ratio bound when applying

the scaling method cannot be less than zero, in order to avoid values changing their sign. These

bounds on change are applied after the rounding algorithm is complete. If any fields are found to

exceed the upper or lower bounds on change at this point, prorating will stop processing all

further data for that particular record, and skip to the next. An appropriate message will be output

to advise the user that a bound limit has been exceeded, mentioning the specific variable in

violation.

With reference to the previous example, if the user had assigned an Upper Ratio bound = 1.25,

after rounding was completed the procedure would have found that variable “a” (prorated from 6

to 9) was more than 125% of its original value. Therefore the entire record REC001 would have

been dropped from further analysis, along with a message detailing how prorating was

unsuccessful for that particular record due to the violation of a Ratio bound.

MASS IMPUTATION

10-1

10. PROC MASSIMPUTATION – MASS IMPUTATION

Purpose

For operational reasons, in some surveys, detailed information is collected only for a subsample

(or second phase sample) of units selected randomly from a large first phase sample. Classical

estimates based on the subsample require the derivation of subsampling weights. The derivation

of such weights can be quite complex. An alternative technique is known as 'mass imputation'

where a complete rectangular file is created for the entire first phase sample units by donor

imputing the missing information for the nonsampled units, after the editing and imputation for

the second phase sample units has been completed. A procedure has been developed in Banff to

facilitate such an operation, using the nearest-neighbour approach. In a typical edit and

imputation scenario, the objective is to determine whether a record contains incorrect, missing,

inconsistent or outlying responses; the pattern of failure is assumed to be different for each

record. In the case of mass imputation, however, the records which require imputation are known

and the fields to be imputed are both known and identical for all records. Again, it is assumed that

the set of core information collected from the entire sample and the extra items collected from the

sub-sample have already been edited and imputed (possibly outside of Banff) and that no

consistency edits need to be applied, either to the individual sections or between the two sections.

Matching Fields

Since there is basically no data to which to apply edits for the recipients, the concept of using

edits within edit groups for system-identification of fields in error in Banff is not applicable. It

follows that the determination of matching fields by the system cannot be performed. However,

the user may specify matching fields to be used in finding donors. The matching fields are

specified as parameters of the program.

The data for these user-specified matching fields must be in the input dataset. If it occurs that a

matching field value is missing for a recipient, that matching field cannot be used for that record

since there is no valid value to be used in the distance calculation. In the case of no valid

matching fields being available, the user can have the system randomly select a donor for a

recipient.

If the user has specified matching fields, the system will transform the matching field values for

those donor and recipient records where there are valid values available. This is the same as in the

Donor Imputation procedure; refer to section 7.3.

In the case where the user has not specified any matching fields, for each recipient the system will

automatically select a random donor.

Other Parameters

As for the Donor Imputation procedure, the user may specify the minimum percentage and

number of donor records that must be available for imputation to proceed. These parameters have

default values if not specified by the user. The user may also limit the number of times a donor is

used, which is unlimited by default.

MASS IMPUTATION

10-2

Description of the Method

The actual execution of the program is very similar to that for the Donor Imputation procedure;

refer to section 7.4. There is one significant difference. This is that post-imputation edits are not

required. In fact, the procedure will simply impute into the recipient record whatever data is in the

input data table from the closest donor record, or from the first randomly selected donor record in

the case of no valid matching fields being available. Thus it is very important that the user

provide “clean” data for the donor records.

No status file is created by Proc Massimputation. However, a massimputation status may be

required by the user in order to calculate variance due to imputation. There is an option for the

Banff Processor users to add the status IMAS to the global status file for values imputed by Proc

Massimputation. For users of Banff in SAS, the status IMAS must be added manually. Contact

Banff support if you need the SAS code to generate the IMAS status from the Proc

Massimputation run.

REFERENCES

11-1

11. REFERENCES

Banff Support Team (2006). Specifying Edits for Processing Negative Values with Banff.

Statistics Canada Technical Report.

Banff Support Team (2017). Banff 2.07 Procedures User Guide. Statistics Canada Technical

Report.

Banff Support Team (2017). Banff 2.07 Processor User Guide. Statistics Canada Technical

Report.

Banff Support Team (2014). Banff 2.06 Tutorial. Statistics Canada Technical Report.

Banff Support Team (2016). Banff FAQ. Intranet page:

 \\fld6filer\Team0167\Public\Generalized Systems\Banff\FAQ\FAQ_en_fr.pdf.

Chernikova, N.V. (1964). Algorithm for finding a general formula for the nonnegative solutions

of a system of linear equations. U.S.S.R. Computational Mathematics and

Mathematical Physics 4, 151-158.

Chernikova, N.V. (1965). Algorithm for finding a general formula for the nonnegative solution of

a system of linear inequalities. U.S.S.R. Computational Mathematics and

Mathematical Physics 5, 228-233.

Fellegi, I.P., and Holt D. (1976). A systematic approach to automatic edit and imputation.

Journal of the American Statistical Association 71, 17-35.

Friedman, J.H., Bentley, J.L. and Finkel, R.A. (1977). An algorithm for finding best matches in

logarithmic expected time. ACM Transaction on Mathematical Software 3, 209-226.

GEIS Support Team (1991). Functional Description of the Generalized Edit and Imputation

System. (Revised October 2000). Statistics Canada Technical Report.

Giles, P. (1989). Analysis of edits in a generalized edit and imputation system. Statistics Canada,

Methodology Branch Working Paper No. SSMD-89-004E.

Hidiroglou, M.A. and Berthelot, J.-M. (1986). Statistical editing and imputation for periodic

business surveys. Survey Methodology 12, 73-83.

Kovar, J.G., MacMillan, J. and Whitridge, P. (1988). Overview and strategy for the Generalized

Edit and Imputation System. (Updated February 1991). Statistics Canada, Methodology

Branch Working Paper No. BSMD-88-007E/F.

Morabito, J. and Shields, M. (1992). Generalized Edit and Imputation System Applications

User's Guide. Statistics Canada Technical Report.

Rousseeuw, Peter J. and M. Leroy, Annick (2003). Robust Regression and Outlier Detection.

Wiley, New Jersey.

file://///fld6filer/Team0167/Public/Generalized%20Systems/Banff/FAQ/FAQ_en_fr.pdf

REFERENCES

11-2

Rubin, D.S. (1973). Vertex generation in cardinality constrained linear programs. Operations

Research 23, 555-565.

Sande, G. (1978). An algorithm for the fields to impute problems of numerical and coded data.

Statistics Canada Technical Report.

Sande, G. (1979). Numerical Edit and Imputation. Presented at the 42nd International Statistical

Institute Meeting, Manila, Philippines.

Schiopu-Kratina, I. and Kovar, J.G. (1989). Use of Chernikova's algorithm in the Generalized

Edit and Imputation System. Statistics Canada, Methodology Branch Working Paper No.

BSMD-89-001E.

CALCULATION OF MEDIANS

AND QUARTILES

A-1

Appendix A – Calculation of Medians and Quartiles

Medians

The median divides a set of observations into two groups, each containing 50% of the

observations. Half of the values are less than the median and half are greater.

If the number of observations is odd, the median is the middle observation. With n observations,

the median is in the

2

1n
 position of the ordered observations.

If the number of observations is even, the median is the average of the two central observations.

With n observations, the median is the average of the observations in the
2

n
 and the 1

2

n

positions.

Examples of Medians

 Sorted Observations n Median

set 1: 1 2 6 7 9 5 6

set 2: 42 59 59 3 59

set 3: 3 6 9 10 4 7.5 = (6+9)/2

set 4: 2 10 10 10 12 500 6 10 =(10+10)/2

Quartiles

The first quartile divides the observations into two groups so that 25% of the observations are

less than the value of the first quartile and 75% are greater. To find the first quartile, calculate .25

* (n+1) where n is the number of observations. If this is an integer, the first quartile is equal to

the observation in that rank. If this is not an integer but is a value in the form w.d, then the first

quartile is between the w th and the (w+1)th observations. The exact value is found by taking (1-

.d) times the w th observation plus .d times the (w+1)th observation.

The third quartile divides the observations into two groups so that 75% of the observations are

less than the value of the third quartile and 25% are greater. To find the third quartile, calculate

.75 * (n+1) where n is the number of observations. If this is an integer, the third quartile is equal

to the observation in that rank. If this is not an integer but is a value such as w.d, then the third

quartile is between the w th and the (w+1)th observations. The exact value is found by taking (1-

.d) times the w th observation plus .d times the (w+1)th observation.

Examples of Quartiles

Suppose there are 8 sorted observations: 1, 3, 6, 7, 10, 11, 12, 18. To calculate the first quartile,

find the value of .25 * (n+1), which is .25 * 9 = 2.25 for this example. This indicates that the first

quartile is one quarter of the way between the second and third ordered observations. Banff

calculates the first quartile as .75 of the second ordered observation plus .25 of the third ordered

observation. In this case, the first quartile is (.75*3) + (.25*6) = 3.75. It makes sense that the

first quartile is nearer the second observation of 3 than the third observation of 6 because it was

calculated to be only one quarter of the way between the two observations.

CALCULATION OF MEDIANS

AND QUARTILES

A-2

Similarly, to find the third quartile, calculate .75 * (n+1), which is .75 * 9 = 6.75 in this example.

Therefore, the third quartile is taken as three quarters of the way between the sixth and the

seventh ordered observations. In this example, the third quartile would be .25 times the sixth

observation plus .75 times the seventh, or (.25*11) + (.75*12) = 11.75. Again, it makes sense

that the third quartile is closer to the seventh observation of 12 than to the sixth observation of 11

because it was calculated that the third quartile was three quarters of the way between the sixth

and seventh observations.

The median of this group of observations is 8.5, the average of the fourth and fifth observations.

PRE-DEFINED ALGORITHMS IN BANFF

B-1

Appendix B – Pre-Defined Algorithms in Banff

Algorithm: AUXTREND

Equation:

iH
iH

iC
iC y

x

x
ŷ

Type: EF

Status: AT

Format: aux1(c,v) * fieldid(h,v) / aux1(h,v)

Description: The value from the previous survey for the same unit, with a trend adjustment

calculated from an auxiliary variable, is imputed

Algorithm: AUXTREND2

Equation:

iH

iC

iH

iCiH
iC

v

v

u

u

2

y
ŷ

Type: EF

Status: AT2

Format: fieldid(h,v) / 2 * (aux1(c,v)/aux1(h,v) + aux2(c,v)/aux2(h,v))

Description: An average of two AUXTRENDs is imputed

Algorithm: CURAUX

Equation:
iCiC xŷ

Type: EF

Status: CA

Format: aux1(c,v)

Description: The current value of a proxy variable for the same unit is imputed

Algorithm: CURAUXMEAN

Equation:
CiC xŷ

Type: EF

Status: CAM

Format: aux1(c,a)

Description: The current average of a proxy variable is imputed

Algorithm: CURMEAN

Equation:
CiC yŷ

Type: EF

Status: CM

Format: fieldid(c,a)

Description: The mean value of all (user-defined) respondents for the current survey is

imputed

PRE-DEFINED ALGORITHMS IN BANFF

B-2

Algorithm: CURRATIO

Equation:

iC
C

C
iC x

x

y
ŷ

Type: EF

Status: CR

Format: fieldid(c,a) * aux1(c,v) / aux1(c,a)

Description: A ratio estimate, using values of all (user-defined) respondents from the

current survey is imputed

Algorithm: CURRATIO2

Equation:

C

iC

C

iCC
iC

v

v

u

u

2

y
ŷ

Type: EF

Status: CR2

Format: fieldid(c,a)/2 * (aux1(c,v)/aux1(c,a) + aux2(c,v)/aux2(c,a))

Description: An average of two CURRATIOs is imputed

Algorithm: CURREG

Equation:
iC10iC xβ̂β̂ŷ

Type: LR

Status: LR1

Format: intercept, aux1(c)

Description: A simple linear regression based on one independent variable from the current

data table

Algorithm: CURREG_E2

Equation: 2
iC2iC10iC xβ̂xβ̂β̂ŷ

Type: LR

Status: LRE

Format: intercept, aux1(c), aux1(c)2

Description: A regression based on the value and the squared value of a variable from the

current data table

Algorithm: CURREG2

Equation:
iC2iC10iC vβ̂uβ̂β̂ŷ

Type: LR

Status: LR2

Format: intercept, aux1(c), aux2(c)

Description: A linear regression based on two independent variables from the current data

table

PRE-DEFINED ALGORITHMS IN BANFF

B-3

Algorithm: CURREG3

Equation:
iC3iC2iC10iC wβ̂vβ̂uβ̂β̂ŷ

Type: LR

Status: LR3

Format: intercept, aux1(c), aux2(c), aux3(c)

Description: A linear regression based on three independent variables from the current data

table

Algorithm: CURSUM2

Equation:
iCiCiC vuŷ

Type: EF

Status: SM2

Format: aux1 + aux2

Description: The sum of two auxiliary variables from the current data table

Algorithm: CURSUM3

Equation:
iCiCiCiC wvuŷ

Type: EF

Status: SM3

Format: aux1 + aux2 + aux3

Description: The sum of three auxiliary variables from the current data table

Algorithm: CURSUM4

Equation:
iCiCiCiCiC zwvuŷ

Type: EF

Status: SM4

Format: aux1 + aux2 + aux3 + aux4

Description: The sum of four auxiliary variables from the current data table

Algorithm: DIFTREND

Equation:

iH
H

C
iC y

y

y
ŷ

Type: EF

Status: DT

Format: fieldid(c,a) * fieldid(h,v) / fieldid(h,a)

Description: The value from the previous survey for the same unit, with a trend adjustment

calculated from the difference of reported values for the variable, is imputed

Algorithm: HISTREG

Equation:
iH10iC yβ̂β̂ŷ

Type: LR

Status: HLR

Format: intercept, fieldid(h)

Description: A linear regression based on the historical value of the variable to impute

PRE-DEFINED ALGORITHMS IN BANFF

B-4

Algorithm: PREAUX

Equation:
iHiC xŷ

Type: EF

Status: PA

Format: aux1(h,v)

Description: The historical value of a proxy variable for the same unit

Algorithm: PREAUXMEAN

Equation:
HiC xŷ

Type: EF

Status: PAM

Format: aux1(h,a)

Description: The historical average of a proxy variable for the same unit is imputed

Algorithm: PREMEAN

Equation:
HiC yŷ

Type: EF

Status: PM

Format: fieldid(h,a)

Description: The mean value from the previous survey of all (user-defined) respondents is

imputed

Algorithm: PREVALUE

Equation:
iHiC yŷ

Type: EF

Status: PV

Format: fieldid(h,v)

Description: The value from the previous survey for the same unit is imputed

	1. INTRODUCTION
	2. PROC VERIFYEDITS – EDIT SPECIFICATION AND ANALYSIS
	3. PROC EDITSTATS – EDIT SUMMARY STATISTICS TABLES
	4. PROC OUTLIER – OUTLIER DETECTION
	5. PROC ERRORLOC – ERROR LOCALIZATION
	6. PROC DETERMINISTIC – DETERMINISTIC IMPUTATION
	7. PROC DONORIMPUTATION – DONOR IMPUTATION
	8. PROC ESTIMATOR – IMPUTATION ESTIMATORS
	9. PROC PRORATE – PRORATING
	10. PROC MASSIMPUTATION – MASS IMPUTATION
	11. REFERENCES
	Appendix A – Calculation of Medians and Quartiles

